Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_2_a3, author = {Nakamigawa, Tomoki}, title = {A {Ramsey-type} theorem for multiple disjoint copies of induced subgraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {249--261}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a3/} }
TY - JOUR AU - Nakamigawa, Tomoki TI - A Ramsey-type theorem for multiple disjoint copies of induced subgraphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 249 EP - 261 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a3/ LA - en ID - DMGT_2014_34_2_a3 ER -
Nakamigawa, Tomoki. A Ramsey-type theorem for multiple disjoint copies of induced subgraphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 249-261. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a3/
[1] S.A. Burr, On the Ramsey numbers r(G, nH) and r(nG, nH) when n is large, Discrete Math. 65 (1987) 215-229. doi:10.1016/0012-365X(87)90053-7
[2] S.A. Burr, On Ramsey numbers for large disjoint unions of graphs, Discrete Math. 70 (1988) 277-293. doi:10.1016/0012-365X(88)90004-0
[3] S.A. Burr, P. Erdős and J.H. Spencer, Ramsey theorems for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975) 87-99. doi:10.1090/S0002-9947-1975-0409255-0
[4] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory, 2nd Edition (Wiley, New York, 1990).
[5] T. Nakamigawa, Vertex disjoint equivalent subgraphs of order 3, J. Graph Theory 56 (2007) 159-166. doi:10.1002/jgt.20263