Maximal buttonings of trees
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 415-420
Cet article a éte moissonné depuis la source Library of Science
A buttoning of a tree that has vertices v_1, v_2, . . ., v_n is a closed walk that starts at v_1 and travels along the shortest path in the tree to v_2, and then along the shortest path to v_3, and so forth, finishing with the shortest path from v_n to v_1. Inspired by a problem about buttoning a shirt inefficiently, we determine the maximum length of buttonings of trees.
Keywords:
centroid, graph metric, tree, walk, Wiener distance
@article{DMGT_2014_34_2_a14,
author = {Short, Ian},
title = {Maximal buttonings of trees},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {415--420},
year = {2014},
volume = {34},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a14/}
}
Short, Ian. Maximal buttonings of trees. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 415-420. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a14/
[1] C.A. Barefoot, R.C. Entringer and L.A. Székely, Extremal values for ratios of distances in trees, Discrete Appl. Math. 80 (1997) 37-56. doi:10.1016/S0166-218X(97)00068-1
[2] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math 66 (2001) 211-249. doi:10.1023/A:1010767517079
[3] L. Johns and T.C. Lee, S-distance in trees, in: Computing in the 90’s (Kalamazoo, MI, 1989), Lecture Notes in Comput. Sci., 507, N.A. Sherwani, E. de Doncker and J.A. Kapenga (Ed(s)), (Springer, Berlin, 1991) 29-33. doi:10.1007/BFb0038469
[4] T. Lengyel, Some graph problems and the realizability of metrics by graphs, Congr. Numer. 78 (1990) 245-254.