Maximal buttonings of trees
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 415-420.

Voir la notice de l'article provenant de la source Library of Science

A buttoning of a tree that has vertices v_1, v_2, . . ., v_n is a closed walk that starts at v_1 and travels along the shortest path in the tree to v_2, and then along the shortest path to v_3, and so forth, finishing with the shortest path from v_n to v_1. Inspired by a problem about buttoning a shirt inefficiently, we determine the maximum length of buttonings of trees.
Keywords: centroid, graph metric, tree, walk, Wiener distance
@article{DMGT_2014_34_2_a14,
     author = {Short, Ian},
     title = {Maximal buttonings of trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {415--420},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a14/}
}
TY  - JOUR
AU  - Short, Ian
TI  - Maximal buttonings of trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 415
EP  - 420
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a14/
LA  - en
ID  - DMGT_2014_34_2_a14
ER  - 
%0 Journal Article
%A Short, Ian
%T Maximal buttonings of trees
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 415-420
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a14/
%G en
%F DMGT_2014_34_2_a14
Short, Ian. Maximal buttonings of trees. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 415-420. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a14/

[1] C.A. Barefoot, R.C. Entringer and L.A. Székely, Extremal values for ratios of distances in trees, Discrete Appl. Math. 80 (1997) 37-56. doi:10.1016/S0166-218X(97)00068-1

[2] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math 66 (2001) 211-249. doi:10.1023/A:1010767517079

[3] L. Johns and T.C. Lee, S-distance in trees, in: Computing in the 90’s (Kalamazoo, MI, 1989), Lecture Notes in Comput. Sci., 507, N.A. Sherwani, E. de Doncker and J.A. Kapenga (Ed(s)), (Springer, Berlin, 1991) 29-33. doi:10.1007/BFb0038469

[4] T. Lengyel, Some graph problems and the realizability of metrics by graphs, Congr. Numer. 78 (1990) 245-254.