Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_2_a11, author = {Manoussakis, Y. and Patil, H.P.}, title = {On degree sets and the minimum orders in bipartite graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {383--390}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/} }
TY - JOUR AU - Manoussakis, Y. AU - Patil, H.P. TI - On degree sets and the minimum orders in bipartite graphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 383 EP - 390 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/ LA - en ID - DMGT_2014_34_2_a11 ER -
Manoussakis, Y.; Patil, H.P. On degree sets and the minimum orders in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/
[1] F. Harary, Graph Theory (Addison-Wesley, Reading Mass, 1969).
[2] S.F. Kapoor, A.D. Polimeni and C.W. Wall, Degree sets for graphs, Fund. Math. XCV (1977) 189-194.
[3] Y. Manoussakis, H.P. Patil and V. Sankar, Further results on degree sets for graphs, AKCE Int. J. Graphs Comb. 1 (2004) 77-82.
[4] Y. Manoussakis and H.P. Patil, Bipartite graphs and their degree sets, R.C. Bose Centenary Symposium on Discrete Mathematics and Applications, (Kolkata India, 15-21 Dec. 2002), Electron. Notes Discrete Math. 15 (2003) 125. doi:10.1016/S1571-0653(04)00554-2
[5] S. Pirzada, T.A. Naikoo, and F.A. Dar, Degree sets in bipartite and 3-partite graphs, Orient. J. Math Sciences 1 (2007) 39-45.
[6] A. Tripathi and S. Vijay, On the least size of a graph with a given degree set, Discrete Appl. Math. 154 (2006) 2530-2536. doi:10.1016/j.dam.2006.04.003