On degree sets and the minimum orders in bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 383-390
Voir la notice de l'article provenant de la source Library of Science
For any simple graph G, let D(G) denote the degree set deg_G(v) : v ∈ V (G). Let S be a finite, nonempty set of positive integers. In this paper, we first determine the families of graphs G which are unicyclic, bipartite satisfying D(G) = S, and further obtain the graphs of minimum orders in such families. More general, for a given pair (S, T) of finite, nonempty sets of positive integers of the same cardinality, it is shown that there exists a bipartite graph B(X, Y) such that D(X) = S, D(Y ) = T and the minimum orders of different types are obtained for such graphs
Keywords:
degree sets, unicyclic graphs
@article{DMGT_2014_34_2_a11,
author = {Manoussakis, Y. and Patil, H.P.},
title = {On degree sets and the minimum orders in bipartite graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {383--390},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/}
}
TY - JOUR AU - Manoussakis, Y. AU - Patil, H.P. TI - On degree sets and the minimum orders in bipartite graphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 383 EP - 390 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/ LA - en ID - DMGT_2014_34_2_a11 ER -
Manoussakis, Y.; Patil, H.P. On degree sets and the minimum orders in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/