On degree sets and the minimum orders in bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 383-390

Voir la notice de l'article provenant de la source Library of Science

For any simple graph G, let D(G) denote the degree set deg_G(v) : v ∈ V (G). Let S be a finite, nonempty set of positive integers. In this paper, we first determine the families of graphs G which are unicyclic, bipartite satisfying D(G) = S, and further obtain the graphs of minimum orders in such families. More general, for a given pair (S, T) of finite, nonempty sets of positive integers of the same cardinality, it is shown that there exists a bipartite graph B(X, Y) such that D(X) = S, D(Y ) = T and the minimum orders of different types are obtained for such graphs
Keywords: degree sets, unicyclic graphs
@article{DMGT_2014_34_2_a11,
     author = {Manoussakis, Y. and Patil, H.P.},
     title = {On degree sets and the minimum orders in bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {383--390},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/}
}
TY  - JOUR
AU  - Manoussakis, Y.
AU  - Patil, H.P.
TI  - On degree sets and the minimum orders in bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 383
EP  - 390
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/
LA  - en
ID  - DMGT_2014_34_2_a11
ER  - 
%0 Journal Article
%A Manoussakis, Y.
%A Patil, H.P.
%T On degree sets and the minimum orders in bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 383-390
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/
%G en
%F DMGT_2014_34_2_a11
Manoussakis, Y.; Patil, H.P. On degree sets and the minimum orders in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/