On degree sets and the minimum orders in bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 383-390.

Voir la notice de l'article provenant de la source Library of Science

For any simple graph G, let D(G) denote the degree set deg_G(v) : v ∈ V (G). Let S be a finite, nonempty set of positive integers. In this paper, we first determine the families of graphs G which are unicyclic, bipartite satisfying D(G) = S, and further obtain the graphs of minimum orders in such families. More general, for a given pair (S, T) of finite, nonempty sets of positive integers of the same cardinality, it is shown that there exists a bipartite graph B(X, Y) such that D(X) = S, D(Y ) = T and the minimum orders of different types are obtained for such graphs
Keywords: degree sets, unicyclic graphs
@article{DMGT_2014_34_2_a11,
     author = {Manoussakis, Y. and Patil, H.P.},
     title = {On degree sets and the minimum orders in bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {383--390},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/}
}
TY  - JOUR
AU  - Manoussakis, Y.
AU  - Patil, H.P.
TI  - On degree sets and the minimum orders in bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 383
EP  - 390
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/
LA  - en
ID  - DMGT_2014_34_2_a11
ER  - 
%0 Journal Article
%A Manoussakis, Y.
%A Patil, H.P.
%T On degree sets and the minimum orders in bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 383-390
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/
%G en
%F DMGT_2014_34_2_a11
Manoussakis, Y.; Patil, H.P. On degree sets and the minimum orders in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a11/

[1] F. Harary, Graph Theory (Addison-Wesley, Reading Mass, 1969).

[2] S.F. Kapoor, A.D. Polimeni and C.W. Wall, Degree sets for graphs, Fund. Math. XCV (1977) 189-194.

[3] Y. Manoussakis, H.P. Patil and V. Sankar, Further results on degree sets for graphs, AKCE Int. J. Graphs Comb. 1 (2004) 77-82.

[4] Y. Manoussakis and H.P. Patil, Bipartite graphs and their degree sets, R.C. Bose Centenary Symposium on Discrete Mathematics and Applications, (Kolkata India, 15-21 Dec. 2002), Electron. Notes Discrete Math. 15 (2003) 125. doi:10.1016/S1571-0653(04)00554-2

[5] S. Pirzada, T.A. Naikoo, and F.A. Dar, Degree sets in bipartite and 3-partite graphs, Orient. J. Math Sciences 1 (2007) 39-45.

[6] A. Tripathi and S. Vijay, On the least size of a graph with a given degree set, Discrete Appl. Math. 154 (2006) 2530-2536. doi:10.1016/j.dam.2006.04.003