The Ramsey number for theta graph versus a clique of order three and four
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 223-232.

Voir la notice de l'article provenant de la source Library of Science

For any two graphs F_1 and F_2, the graph Ramsey number r(F_1, F_2) is the smallest positive integer N with the property that every graph on at least N vertices contains F_1 or its complement contains F_2 as a subgraph. In this paper, we consider the Ramsey numbers for theta-complete graphs. We determine r(θ_n,K_m) for m = 2, 3, 4 and n gt; m. More specifically, we establish that r(θ_n,K_m) = (n − 1)(m − 1) + 1 for m = 3, 4 and n gt; m
Keywords: Ramsey number, independent set, theta graph, complete graph
@article{DMGT_2014_34_2_a1,
     author = {Bataineh, M.S.A. and Jaradat, M.M.M. and Bateeha, M.S.},
     title = {The {Ramsey} number for theta graph versus a clique of order three and four},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {223--232},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a1/}
}
TY  - JOUR
AU  - Bataineh, M.S.A.
AU  - Jaradat, M.M.M.
AU  - Bateeha, M.S.
TI  - The Ramsey number for theta graph versus a clique of order three and four
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 223
EP  - 232
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a1/
LA  - en
ID  - DMGT_2014_34_2_a1
ER  - 
%0 Journal Article
%A Bataineh, M.S.A.
%A Jaradat, M.M.M.
%A Bateeha, M.S.
%T The Ramsey number for theta graph versus a clique of order three and four
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 223-232
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a1/
%G en
%F DMGT_2014_34_2_a1
Bataineh, M.S.A.; Jaradat, M.M.M.; Bateeha, M.S. The Ramsey number for theta graph versus a clique of order three and four. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 223-232. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a1/

[1] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small off-diagonal numbers, Pacific J. Math. 41 (1972) 335-345. doi:10.2140/pjm.1972.41.335

[2] R. Bolze and H. Harborth, The Ramsey number $r(K_4 − x,K_5)$, The Theory and Applications of Graphs (Kalamazoo, MI, 1980) John Wiley & Sons, New York (1981) 109-116.

[3] L. Boza, Nuevas Cotas Superiores de Algunos Numeros de Ramsey del Tipo $r(K_m,K_n − e)$, in: Proceedings of the VII Jornada de Matematica Discreta y Algoritmica, JMDA 2010, Castro Urdiales, Spain July (2010).

[4] R.J. Faudree, C.C. Rousseau and R.H. Schelp, All triangle-graph Ramsey numbers for connected graphs of order six, J. Graph Theory 4 (1980) 293-300. doi:10.1002/jgt.3190040307

[5] M.M.M. Jaradat, M.S. Bataineh and S. Radaideh, Ramsey numbers for theta graphs, Internat. J. Combin. 2011 (2011) Article ID 649687. doi:10.1155/2011/649687

[6] J. McNamara, Sunny Brockport, unpublished

[7] J. McNamara and S.P. Radziszowski, The Ramsey Numbers $R(K_4 − e,K_6 − e)$ and $R(K_4 − e,K_7 − e)$, Congr. Numer. 81 (1991) 89-96.

[8] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2011) DS1