The Ramsey number for theta graph versus a clique of order three and four
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 223-232

Voir la notice de l'article provenant de la source Library of Science

For any two graphs F_1 and F_2, the graph Ramsey number r(F_1, F_2) is the smallest positive integer N with the property that every graph on at least N vertices contains F_1 or its complement contains F_2 as a subgraph. In this paper, we consider the Ramsey numbers for theta-complete graphs. We determine r(θ_n,K_m) for m = 2, 3, 4 and n gt; m. More specifically, we establish that r(θ_n,K_m) = (n − 1)(m − 1) + 1 for m = 3, 4 and n gt; m
Keywords: Ramsey number, independent set, theta graph, complete graph
@article{DMGT_2014_34_2_a1,
     author = {Bataineh, M.S.A. and Jaradat, M.M.M. and Bateeha, M.S.},
     title = {The {Ramsey} number for theta graph versus a clique of order three and four},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {223--232},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a1/}
}
TY  - JOUR
AU  - Bataineh, M.S.A.
AU  - Jaradat, M.M.M.
AU  - Bateeha, M.S.
TI  - The Ramsey number for theta graph versus a clique of order three and four
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 223
EP  - 232
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a1/
LA  - en
ID  - DMGT_2014_34_2_a1
ER  - 
%0 Journal Article
%A Bataineh, M.S.A.
%A Jaradat, M.M.M.
%A Bateeha, M.S.
%T The Ramsey number for theta graph versus a clique of order three and four
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 223-232
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a1/
%G en
%F DMGT_2014_34_2_a1
Bataineh, M.S.A.; Jaradat, M.M.M.; Bateeha, M.S. The Ramsey number for theta graph versus a clique of order three and four. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 223-232. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a1/