Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_1_a9, author = {Abueida, Atif A. and Lian, Chester}, title = {On the {Decompositions} of {Complete} {Graphs} into {Cycles} and {Stars} on the {Same} {Number} of {Edges}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {113--125}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a9/} }
TY - JOUR AU - Abueida, Atif A. AU - Lian, Chester TI - On the Decompositions of Complete Graphs into Cycles and Stars on the Same Number of Edges JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 113 EP - 125 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a9/ LA - en ID - DMGT_2014_34_1_a9 ER -
%0 Journal Article %A Abueida, Atif A. %A Lian, Chester %T On the Decompositions of Complete Graphs into Cycles and Stars on the Same Number of Edges %J Discussiones Mathematicae. Graph Theory %D 2014 %P 113-125 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a9/ %G en %F DMGT_2014_34_1_a9
Abueida, Atif A.; Lian, Chester. On the Decompositions of Complete Graphs into Cycles and Stars on the Same Number of Edges. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a9/
[1] A. Abueida, S. Clark and D. Leach, Multidecomposition of the complete graph into graph pairs of order 4 with various leaves, Ars Combin. 93 (2009) 403-407.
[2] A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003) 433-447. doi:10.1007/s00373-003-0530-3
[3] A. Abueida and M. Daven, Multidecompositions of the complete graph, Ars Combin. 72 (2004) 17-22.
[4] A. Abueida, M. Daven and K. Roblee, λ-fold multidesigns for graphs pairs on 4 and 5 vertices, Australas. J. Combin. 32 (2005) 125-136.
[5] A. Abueida and T. O’Neil, Multidecomposition of $λK_m$ into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007) 32-40.
[6] B. Alspach, Research problems, Problem 3, Discrete Math. 36 (1981) 333. doi:10.1016/S0012-365X(81)80029-5
[7] B. Alspach and H. Gavlas, Cycle decompositions of $K_n$ and $K_n − I$, J. Combin. Theory (B) 81 (2001) 77-99. doi:10.1006/jctb.2000.1996
[8] D. Bryant, D. Horsley, B. Maenhaut and B. Smith, Cycle decompositions of complete multigraphs J. Combin. Des. 19 (2011) 42-69. doi:10.1002/jcd.20263
[9] M. Šajna, Cycle decomposition III: complete graphs and fixed length cycles, J. Combin. Des. 10 (2002) 27-78. doi:10.1002/jcd.1027
[10] T. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010) 2164-2169. doi:10.1016/j.disc.2010.04.009
[11] T. Shyu, Decomposition of complete graphs into paths and cycles, Ars Combin. 97 (2010) 257-270.
[12] D. Sotteau, Decomposition of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k, J. Combin. Theory (B) 30 (1981) 75-81. doi:10.1016/0095-8956(81)90093-9
[13] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio, and N. Hamada, On claw-decomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975) 33-42.