Packing the Hypercube
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 85-93

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph that is a subgraph of some n-dimensional hypercube Qn. For sufficiently large n, Stout [20] proved that it is possible to pack vertex-disjoint copies of G in Qn so that any proportion r lt; 1 of the vertices of Qn are covered by the packing. We prove an analogous theorem for edge-disjoint packings: For sufficiently large n, it is possible to pack edge-disjoint copies of G in Qn so that any proportion r lt; 1 of the edges of Qn are covered by the packing.
Keywords: hypercube, packing, decomposition
@article{DMGT_2014_34_1_a6,
     author = {Offner, David},
     title = {Packing the {Hypercube}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a6/}
}
TY  - JOUR
AU  - Offner, David
TI  - Packing the Hypercube
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 85
EP  - 93
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a6/
LA  - en
ID  - DMGT_2014_34_1_a6
ER  - 
%0 Journal Article
%A Offner, David
%T Packing the Hypercube
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 85-93
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a6/
%G en
%F DMGT_2014_34_1_a6
Offner, David. Packing the Hypercube. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a6/