Packing Trees Into n-Chromatic Graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 199-201.

Voir la notice de l'article provenant de la source Library of Science

We show that if a sequence of trees T1, T2, ..., Tn−1 can be packed into Kn then they can be also packed into any n-chromatic graph.
Keywords: tree packing
@article{DMGT_2014_34_1_a16,
     author = {Gy\'arf\'as, Andr\'as},
     title = {Packing {Trees} {Into} {\protect\emph{n}-Chromatic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {199--201},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a16/}
}
TY  - JOUR
AU  - Gyárfás, András
TI  - Packing Trees Into n-Chromatic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 199
EP  - 201
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a16/
LA  - en
ID  - DMGT_2014_34_1_a16
ER  - 
%0 Journal Article
%A Gyárfás, András
%T Packing Trees Into n-Chromatic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 199-201
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a16/
%G en
%F DMGT_2014_34_1_a16
Gyárfás, András. Packing Trees Into n-Chromatic Graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 199-201. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a16/

[1] D. Gerbner, B. Keszegh and C. Palmer, Generalizations of the tree packing conjecture, Discuss. Math. Graph Theory 32 (2012) 569-582. doi:10.7151/dmgt.1628

[2] D. Gerbner, B. Keszegh and C. Palmer, Red-blue alternating paths, Third Emléktábla Workshop, p.25. http://www.renyi.hu/emlektab/index/booklet.html

[3] A. Gyárfás and J. Lehel, Packing trees of different order into Kn, Combinatorics, Proc. Fifth Hungarian Coll. Keszthely, 1976, Vol II. North Holland. Colloq. Math. Soc. J. Bolyai 18 463-469.

[4] A. Gyárfás, E. Szemerédi and Zs. Tuza, Induced subtrees in graphs of large chromatic number, Discrete Math. 30 (1980) 235-244. doi:10.1016/0012-365X(80)90230-7

[5] S. Zaks and C.L. Liu, Decomposition of graphs into trees, Proceedings of 8-th South-eastern Conference on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La. Util. Math., Congr. Numer. XIX (1977) 643-654.