@article{DMGT_2014_34_1_a16,
author = {Gy\'arf\'as, Andr\'as},
title = {Packing {Trees} {Into} {\protect\emph{n}-Chromatic} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {199--201},
year = {2014},
volume = {34},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a16/}
}
Gyárfás, András. Packing Trees Into n-Chromatic Graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 199-201. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a16/
[1] D. Gerbner, B. Keszegh and C. Palmer, Generalizations of the tree packing conjecture, Discuss. Math. Graph Theory 32 (2012) 569-582. doi:10.7151/dmgt.1628
[2] D. Gerbner, B. Keszegh and C. Palmer, Red-blue alternating paths, Third Emléktábla Workshop, p.25. http://www.renyi.hu/emlektab/index/booklet.html
[3] A. Gyárfás and J. Lehel, Packing trees of different order into Kn, Combinatorics, Proc. Fifth Hungarian Coll. Keszthely, 1976, Vol II. North Holland. Colloq. Math. Soc. J. Bolyai 18 463-469.
[4] A. Gyárfás, E. Szemerédi and Zs. Tuza, Induced subtrees in graphs of large chromatic number, Discrete Math. 30 (1980) 235-244. doi:10.1016/0012-365X(80)90230-7
[5] S. Zaks and C.L. Liu, Decomposition of graphs into trees, Proceedings of 8-th South-eastern Conference on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La. Util. Math., Congr. Numer. XIX (1977) 643-654.