Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_1_a13, author = {Hell, Pavol and Hern\'andez-Cruz, C\'esar}, title = {On the {Complexity} of the {3-Kernel} {Problem} in {Some} {Classes} of {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {167--185}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a13/} }
TY - JOUR AU - Hell, Pavol AU - Hernández-Cruz, César TI - On the Complexity of the 3-Kernel Problem in Some Classes of Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 167 EP - 185 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a13/ LA - en ID - DMGT_2014_34_1_a13 ER -
Hell, Pavol; Hernández-Cruz, César. On the Complexity of the 3-Kernel Problem in Some Classes of Digraphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 167-185. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a13/
[1] J. Bang-Jensen and G. Gutin, Digraphs (Springer-Verlag, Berlin Heidelberg New York, 2002).
[2] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141-161. doi:10.1002/jgt.3190200205
[3] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
[4] C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27-31. doi:10.1016/0012-365X(90)90346-J
[5] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, Berlin Heidelberg New York, 2008).
[6] V. Chvátal, On the computational complexity of finding a kernel, Technical Report Centre de Recherches Mathématiques, Université de Montréal CRM-300 (1973).
[7] A.S. Fraenkel, Planar kernel and Grundy with d ≤ 3, d+ ≤ 2, d− ≤ 2 are NP-complete, Discrete Appl. Math. 3 (1981) 257-262. doi:10.1016/0166-218X(81)90003-2
[8] H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of 3-quasi-transitive digraphs, Discrete Math. 310 (2010) 2495-2498. doi:10.1016/j.disc.2010.06.008
[9] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in multipartite tournaments, AKCE Int. J. Graphs Comb. 8 (2011) 181-198.
[10] H. Galeana-Sánchez and C. Hernández-Cruz, On the existence of k-kernels digraphs and in weighted digraphs, AKCE Int. J. Graphs Comb. 7 (2010) 201-215.
[11] H. Galeana-Sánchez and C. Hernández-Cruz, Cyclically k-partite digraphs and k- kernels, Discuss. Math. Graph Theory 31 (2011) 63-78. doi:10.7151/dmgt.1530
[12] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in generalizations of transitive digraphs, Discuss. Math. Graph Theory 31 (2011) 293-312. doi:10.7151/dmgt.1546
[13] H. Galeana-Sánchez, C. Hernández-Cruz and M.A. Juárez-Camacho, On the existence and number of (k+1)-kings in k-quasi-transitive digraphs, Discrete Math. 313 (2013) 2582-2591.
[14] C. Hernández-Cruz and H. Galeana-Sánchez, k-kernels in k-transitive and k-quasi- transitive digraphs, Discrete Math. 312 (2012) 2522-2530. doi:10.1016/j.disc.2012.05.005
[15] M. Kwaśnik, A. W loch and I. W loch, Some remarks about (k, l)-kernels in directed and undirected graphs, Discuss. Math. 13 (1993) 29-37.
[16] M. Richardson, On weakly ordered systems, Bull. Amer. Math. Soc. 52(2) (1946) 113-116. doi:10.1090/S0002-9904-1946-08518-3
[17] A. Sánchez-Flores, A counterexample to a generalization of Richardson’s theorem, Discrete Math. 65 (1987) 319-320. doi:10.1016/0012-365X(87)90064-1