Maximum Hypergraphs without Regular Subgraphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 151-166

Voir la notice de l'article provenant de la source Library of Science

We show that an n-vertex hypergraph with no r-regular subgraphs has at most 2^n−1+r−2 edges. We conjecture that if n gt; r, then every n-vertex hypergraph with no r-regular subgraphs having the maximum number of edges contains a full star, that is, 2^n−1 distinct edges containing a given vertex. We prove this conjecture for n ≥ 425. The condition that n gt; r cannot be weakened.
Keywords: hypergraphs, set system, subgraph, regular graph
@article{DMGT_2014_34_1_a12,
     author = {Kim, Jaehoon and Kostochka, Alexandr V.},
     title = {Maximum {Hypergraphs} without {Regular} {Subgraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {151--166},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a12/}
}
TY  - JOUR
AU  - Kim, Jaehoon
AU  - Kostochka, Alexandr V.
TI  - Maximum Hypergraphs without Regular Subgraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 151
EP  - 166
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a12/
LA  - en
ID  - DMGT_2014_34_1_a12
ER  - 
%0 Journal Article
%A Kim, Jaehoon
%A Kostochka, Alexandr V.
%T Maximum Hypergraphs without Regular Subgraphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 151-166
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a12/
%G en
%F DMGT_2014_34_1_a12
Kim, Jaehoon; Kostochka, Alexandr V. Maximum Hypergraphs without Regular Subgraphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 151-166. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a12/