Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_1_a10, author = {Wang, Dingguo and Shan, Erfang}, title = {On the {Numbers} of {Cut-Vertices} and {End-Blocks} in {4-Regular} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {127--136}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a10/} }
TY - JOUR AU - Wang, Dingguo AU - Shan, Erfang TI - On the Numbers of Cut-Vertices and End-Blocks in 4-Regular Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 127 EP - 136 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a10/ LA - en ID - DMGT_2014_34_1_a10 ER -
Wang, Dingguo; Shan, Erfang. On the Numbers of Cut-Vertices and End-Blocks in 4-Regular Graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 127-136. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a10/
[1] M.O. Albertson and D.M. Berman, The number of cut-vertices in a graph of given minimum degree, Discrete Math. 89 (1991) 97-100. doi:10.1016/0012-365X(91)90402-N
[2] B. Bollobás, Modern Graph Theory (New York, Springer-Verlag, 2001).
[3] L.H. Clark and R.C. Entringer, The number of cut vertices in graphs with given minimum degree, Discrete Math. 18 (1990) 137-145. doi:10.1016/0012-365X(90)90145-8
[4] K. Nirmala and A.R. Rao, The number of cut vertices in a regular graph, Cahiers Centre Etudes Reserche Oper. 17 (1975) 295-299.
[5] N. Achuthan and A.R. Rao, On the number of cut edges in a regular graph, Australas. J. Combin. 27 (2003) 5-12.
[6] A. Ramachandra Rao, An extremal problem in graph theory, Israel J. Math. 6 (1968) 261-266. doi:10.1007/BF02760258
[7] A. Ramachandra Rao, Some extremal problems and characterizations in the theory of graphs, Ph.D. Thesis, Indian Statistical Institute (1969).
[8] S.B. Rao, Contributions to the theory of directed and undirected graphs, Ph.D. Thesis, Indian Statistical Institute (1970).
[9] O. Suil and D.B. West, Balloons, cut-edges, matchings, and total domination in regular graphs of odd degree, J. Graph Theory 64 (2010) 116-131. doi:10.1002/jgt.20443