Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_4_a8, author = {Laskar, R.C. and Mulder, Henry Martyn}, title = {Path-Neighborhood {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {731--745}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a8/} }
Laskar, R.C.; Mulder, Henry Martyn. Path-Neighborhood Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 731-745. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a8/
[1] R. Balakrishnan, Triangle graphs, in: Graph Connections (Cochin, 1998), p. 44, Allied Publ., New Delhi, 1999.
[2] R. Balakrishnan, J. Bagga, R. Sampathkumar and N. Thillaigovindan, Triangle graphs, preprint.
[3] H.J. Bandelt and H.M. Mulder, Pseudo-median graphs: decompostion via amalgamation and Cartesian multiplication, Discrete Math. 94 (1991) 161-180. doi:10.1016/0012-365X(91)90022-T
[4] M. Borowiecki, P. Borowiecki, E. Sidorowicz and Z. Skupień, On extremal sizes of locally k-tree graphs, Czechoslovak Math. J. 60 (2010) 571-587. doi:10.1007/s10587-010-0037-z
[5] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph classes a survey (in: SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 1999).
[6] M. Brown and R. Connelly, On graphs with constant link, in: New directions in the theory of graphs, Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971, F. Harary Ed. (Academic Press, New York, 1973) 19-51. doi:10.1016/0012-365X(75)90037-0
[7] M. Brown and R. Connelly, On graphs with constant link II, Discrete Math. 11 (1975) 199-232.
[8] M. Brown and R. Connelly, Extremal problems for local properties of graphs, Australas. J. Combin. 4 (1991) 25-31.
[9] B.L. Chilton, R. Gould and A.D. Polimeni, A note on graphs whose neighborhoods are n-cycles, Geom. Dedicata 3 (1974) 289-294. doi:10.1007/BF00181321
[10] A.A. Diwan and N. Usharani, A condition for the three colourability of planar locally path graphs, in: Foundations of software technology and theoretical computer science (Bangalore, 1995), 52-61, Lecture Notes in Comput. Sci., 1026, Springer, Berlin, 1995. doi:10.1007/3-540-60692-0_40
[11] Y. Egawa and R.E. Ramos, Triangle graphs, Math. Japon. 36 (1991) 465-467.
[12] D. Fronček, Locally linear graphs, Math. Slovaca 39 (1989) 3-6.
[13] D. Fronček, On graphs with prescribed edge neighbourhoods, Comment. Math. Univ. Carolin. 30 (1989) 749-754.
[14] D. Fronček, Locally path-like graphs, Časopis Pĕst. Mat. 114 (1989) 176-180.
[15] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Ann. Discrete Math. 57 (Elsevier, Amsterdam, 2004).
[16] J.I. Hall, Graphs with constnt link and small degree and order, J. Graph Theory 9 (1985) 419-444. doi:10.1002/jgt.3190090313
[17] F. Harary, Graph Theory (Addison-Wesley, Reading Massachusetts, 1969).
[18] P. Hell, Graphs with given neighborhoods I, in: Problémes combinatoires et théorie des graphes, Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976, (Colloq. Internat. CNRS, 260, CNRS, Paris, 1978) 219-223.
[19] R.E. Jamison, F.R. McMorris and H.M. Mulder, Graphs with only caterpillars as spanning trees, Discrete Math. 272 (2003) 81-95. doi:10.1016/S0012-365X(03)00186-9
[20] K. Kuratowski, Sur le probléme des courbes gauches en topologie, Fund. Math. 15 (1930) 271-283.
[21] R.C. Laskar, H.M. Mulder and B. Novick, Maximal outerplanar graphs as chordal graphs, as path-neighborhood graphs, and as triangle graphs, Australas. J. Combin. 52 (2012) 185-195.
[22] R.C. Laskar and H.M. Mulder, Triangle graphs, EI-Report EI 2009-42, Econometrisch Instituut, Erasmus Universiteit, Rotterdam.
[23] C. Lekkerkerker and J. Boland, Representation of a graph by a finite set of intervals on the real line, Fund. Math. 51 (1962) 45-64.
[24] A. Márquez, A. de Mier, M. Noy and M.P. Revuelta, Locally grid graphs: classification and Tutte uniqueness, Discrete Math. 266 (2003) 327-352. doi:10.1016/S0012-365X(02)00818-X
[25] S.L. Mitchell, Algorithms on trees and maximal outerplanar graphs: design, complexity analysis and data structures study, PhD Thesis, University of Virginia, 1977.
[26] T.D. Parsons, Circulant graphs embeddings, J. Combin. Theory (B) 29 (1980) 310-320. doi:10.1016/0095-8956(80)90088-X
[27] T.D. Parsons and T. Pisanski, Graphs which are locally paths, in: Combinatorics and Graph Theory, Banach Center Publ., 25, (PWN, Warsaw, 1989) 127-135
[28] N. Pullman, Clique covering of graphs IV. Algorithms, SIAM J. Comput. 13 (1984) 57-75. doi:10.1137/0213005
[29] S.M. Ulam, A collection of mathematical problems, in: Interscience Tracts in Pure and Applied Mathematics, Vol. XIII, No. 8, (Interscience Publishers, New York/London, 1960).
[30] B. Zelinka, Edge neighbourhood graphs. Czechoslovak Math. J. 36 (1986) 44-47.
[31] B. Zelinka, Locally snake-like graphs, Math. Slovaka 38 (1988) 85-88.
[32] A.A. Zykov, Graph-theoretical results of Novosibirsk mathematicians in: M. Fiedler ed., Theory of Graphs and its Applications, Proc. Sympos. Smolenice, 1963 (Publ. House Czechoslovak Acad. Sci., Prague 1964) 151-153.