Path-Neighborhood Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 731-745.

Voir la notice de l'article provenant de la source Library of Science

A path-neighborhood graph is a connected graph in which every neighborhood induces a path. In the main results the 3-sun-free path-neighborhood graphs are characterized. The 3-sun is obtained from a 6-cycle by adding three chords between the three pairs of vertices at distance 2. A P_k-graph is a path-neighborhood graph in which every neighborhood is a P_k, where P_k is the path on k vertices. The P_k-graphs are characterized for k ≤ 4.
Keywords: path-neighborhood graph, outerplanar graph, MOP, snake, 3- sun, k-fun
@article{DMGT_2013_33_4_a8,
     author = {Laskar, R.C. and Mulder, Henry Martyn},
     title = {Path-Neighborhood {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {731--745},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a8/}
}
TY  - JOUR
AU  - Laskar, R.C.
AU  - Mulder, Henry Martyn
TI  - Path-Neighborhood Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 731
EP  - 745
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a8/
LA  - en
ID  - DMGT_2013_33_4_a8
ER  - 
%0 Journal Article
%A Laskar, R.C.
%A Mulder, Henry Martyn
%T Path-Neighborhood Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 731-745
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a8/
%G en
%F DMGT_2013_33_4_a8
Laskar, R.C.; Mulder, Henry Martyn. Path-Neighborhood Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 731-745. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a8/

[1] R. Balakrishnan, Triangle graphs, in: Graph Connections (Cochin, 1998), p. 44, Allied Publ., New Delhi, 1999.

[2] R. Balakrishnan, J. Bagga, R. Sampathkumar and N. Thillaigovindan, Triangle graphs, preprint.

[3] H.J. Bandelt and H.M. Mulder, Pseudo-median graphs: decompostion via amalgamation and Cartesian multiplication, Discrete Math. 94 (1991) 161-180. doi:10.1016/0012-365X(91)90022-T

[4] M. Borowiecki, P. Borowiecki, E. Sidorowicz and Z. Skupień, On extremal sizes of locally k-tree graphs, Czechoslovak Math. J. 60 (2010) 571-587. doi:10.1007/s10587-010-0037-z

[5] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph classes a survey (in: SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 1999).

[6] M. Brown and R. Connelly, On graphs with constant link, in: New directions in the theory of graphs, Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971, F. Harary Ed. (Academic Press, New York, 1973) 19-51. doi:10.1016/0012-365X(75)90037-0

[7] M. Brown and R. Connelly, On graphs with constant link II, Discrete Math. 11 (1975) 199-232.

[8] M. Brown and R. Connelly, Extremal problems for local properties of graphs, Australas. J. Combin. 4 (1991) 25-31.

[9] B.L. Chilton, R. Gould and A.D. Polimeni, A note on graphs whose neighborhoods are n-cycles, Geom. Dedicata 3 (1974) 289-294. doi:10.1007/BF00181321

[10] A.A. Diwan and N. Usharani, A condition for the three colourability of planar locally path graphs, in: Foundations of software technology and theoretical computer science (Bangalore, 1995), 52-61, Lecture Notes in Comput. Sci., 1026, Springer, Berlin, 1995. doi:10.1007/3-540-60692-0_40

[11] Y. Egawa and R.E. Ramos, Triangle graphs, Math. Japon. 36 (1991) 465-467.

[12] D. Fronček, Locally linear graphs, Math. Slovaca 39 (1989) 3-6.

[13] D. Fronček, On graphs with prescribed edge neighbourhoods, Comment. Math. Univ. Carolin. 30 (1989) 749-754.

[14] D. Fronček, Locally path-like graphs, Časopis Pĕst. Mat. 114 (1989) 176-180.

[15] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Ann. Discrete Math. 57 (Elsevier, Amsterdam, 2004).

[16] J.I. Hall, Graphs with constnt link and small degree and order, J. Graph Theory 9 (1985) 419-444. doi:10.1002/jgt.3190090313

[17] F. Harary, Graph Theory (Addison-Wesley, Reading Massachusetts, 1969).

[18] P. Hell, Graphs with given neighborhoods I, in: Problémes combinatoires et théorie des graphes, Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976, (Colloq. Internat. CNRS, 260, CNRS, Paris, 1978) 219-223.

[19] R.E. Jamison, F.R. McMorris and H.M. Mulder, Graphs with only caterpillars as spanning trees, Discrete Math. 272 (2003) 81-95. doi:10.1016/S0012-365X(03)00186-9

[20] K. Kuratowski, Sur le probléme des courbes gauches en topologie, Fund. Math. 15 (1930) 271-283.

[21] R.C. Laskar, H.M. Mulder and B. Novick, Maximal outerplanar graphs as chordal graphs, as path-neighborhood graphs, and as triangle graphs, Australas. J. Combin. 52 (2012) 185-195.

[22] R.C. Laskar and H.M. Mulder, Triangle graphs, EI-Report EI 2009-42, Econometrisch Instituut, Erasmus Universiteit, Rotterdam.

[23] C. Lekkerkerker and J. Boland, Representation of a graph by a finite set of intervals on the real line, Fund. Math. 51 (1962) 45-64.

[24] A. Márquez, A. de Mier, M. Noy and M.P. Revuelta, Locally grid graphs: classification and Tutte uniqueness, Discrete Math. 266 (2003) 327-352. doi:10.1016/S0012-365X(02)00818-X

[25] S.L. Mitchell, Algorithms on trees and maximal outerplanar graphs: design, complexity analysis and data structures study, PhD Thesis, University of Virginia, 1977.

[26] T.D. Parsons, Circulant graphs embeddings, J. Combin. Theory (B) 29 (1980) 310-320. doi:10.1016/0095-8956(80)90088-X

[27] T.D. Parsons and T. Pisanski, Graphs which are locally paths, in: Combinatorics and Graph Theory, Banach Center Publ., 25, (PWN, Warsaw, 1989) 127-135

[28] N. Pullman, Clique covering of graphs IV. Algorithms, SIAM J. Comput. 13 (1984) 57-75. doi:10.1137/0213005

[29] S.M. Ulam, A collection of mathematical problems, in: Interscience Tracts in Pure and Applied Mathematics, Vol. XIII, No. 8, (Interscience Publishers, New York/London, 1960).

[30] B. Zelinka, Edge neighbourhood graphs. Czechoslovak Math. J. 36 (1986) 44-47.

[31] B. Zelinka, Locally snake-like graphs, Math. Slovaka 38 (1988) 85-88.

[32] A.A. Zykov, Graph-theoretical results of Novosibirsk mathematicians in: M. Fiedler ed., Theory of Graphs and its Applications, Proc. Sympos. Smolenice, 1963 (Publ. House Czechoslovak Acad. Sci., Prague 1964) 151-153.