Symmetric Hamilton Cycle Decompositions of Complete Multigraphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 695-707.

Voir la notice de l'article provenant de la source Library of Science

Let n ≥ 3 and ⋋ ≥ 1 be integers. Let ⋋K_n denote the complete multigraph with edge-multiplicity ⋋. In this paper, we show that there exists a symmetric Hamilton cycle decomposition of ⋋K_2m for all even ⋋ ≥ 2 and m ≥ 2. Also we show that there exists a symmetric Hamilton cycle decomposition of ⋋K_2m − F for all odd ⋋ ≥ 3 and m ≥ 2. In fact, our results together with the earlier results (by Walecki and Brualdi and Schroeder) completely settle the existence of symmetric Hamilton cycle decomposition of ⋋K_n (respectively, ⋋K_n − F, where F is a 1-factor of ⋋K_n) which exist if and only if ⋋(n − 1) is even (respectively, ⋋(n − 1) is odd), except the non-existence cases n ≡ 0 or 6 (mod 8) when ⋋ = 1
Keywords: complete multigraph, 1-factor, symmetric Hamilton cycle, decomposition
@article{DMGT_2013_33_4_a5,
     author = {Chitra, V. and Muthusamy, A.},
     title = {Symmetric {Hamilton} {Cycle} {Decompositions} of {Complete} {Multigraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {695--707},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a5/}
}
TY  - JOUR
AU  - Chitra, V.
AU  - Muthusamy, A.
TI  - Symmetric Hamilton Cycle Decompositions of Complete Multigraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 695
EP  - 707
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a5/
LA  - en
ID  - DMGT_2013_33_4_a5
ER  - 
%0 Journal Article
%A Chitra, V.
%A Muthusamy, A.
%T Symmetric Hamilton Cycle Decompositions of Complete Multigraphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 695-707
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a5/
%G en
%F DMGT_2013_33_4_a5
Chitra, V.; Muthusamy, A. Symmetric Hamilton Cycle Decompositions of Complete Multigraphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 695-707. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a5/

[1] J. Akiyama, M. Kobayashi and G. Nakamura, Symmetric Hamilton cycle decompositions of the complete graph, J. Combin. Des. 12 (2004) 39-45. doi:10.1002/jcd.10066

[2] B. Alspach, The wonderful Walecki construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20.

[3] J. Bosák, Decompositions of Graphs (Kluwer Academic Publishers, 1990).

[4] R.A. Brualdi and M.W. Schroeder, Symmetric Hamilton cycle decompositions of complete graphs minus a 1-factor, J. Combin. Des. 19 (2011) 1-15. doi:10.1002/jcd.20257

[5] M. Buratti, S. Capparelli and A. Del Fra, Cyclic Hamiltonian cycle systems of the -fold complete and cocktail party graph, European J. Combin. 31 (2010) 1484-1496. doi:10.1016/j.ejc.2010.01.004

[6] M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Math. 279 (2004) 107-119. doi:10.1016/S0012-365X(03)00267-X

[7] M. Buratti and F. Merola, Dihedral Hamiltonian cycle system of the cocktail party graph, J. Combin. Des. 21 (2013) 1-23. doi:10.1002/jcd.21311

[8] A.J.W. Hilton, Hamiltonian decompositions of complete graphs, J. Combin. Theory (B) 36 (1984) 125-134. doi:10.1016/0095-8956(84)90020-0

[9] H. Jordon and J. Morris, Cyclic hamiltonian cycle systems of the complete graph minus a 1-factor, Discrete Math. 308 (2008) 2440-2449. doi:10.1016/j.disc.2007.05.009

[10] D.E. Lucas, Recreations Mathematiques, Vol.2 (Gauthiers Villars, Paris, 1982).