@article{DMGT_2013_33_4_a5,
author = {Chitra, V. and Muthusamy, A.},
title = {Symmetric {Hamilton} {Cycle} {Decompositions} of {Complete} {Multigraphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {695--707},
year = {2013},
volume = {33},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a5/}
}
Chitra, V.; Muthusamy, A. Symmetric Hamilton Cycle Decompositions of Complete Multigraphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 695-707. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a5/
[1] J. Akiyama, M. Kobayashi and G. Nakamura, Symmetric Hamilton cycle decompositions of the complete graph, J. Combin. Des. 12 (2004) 39-45. doi:10.1002/jcd.10066
[2] B. Alspach, The wonderful Walecki construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20.
[3] J. Bosák, Decompositions of Graphs (Kluwer Academic Publishers, 1990).
[4] R.A. Brualdi and M.W. Schroeder, Symmetric Hamilton cycle decompositions of complete graphs minus a 1-factor, J. Combin. Des. 19 (2011) 1-15. doi:10.1002/jcd.20257
[5] M. Buratti, S. Capparelli and A. Del Fra, Cyclic Hamiltonian cycle systems of the -fold complete and cocktail party graph, European J. Combin. 31 (2010) 1484-1496. doi:10.1016/j.ejc.2010.01.004
[6] M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Math. 279 (2004) 107-119. doi:10.1016/S0012-365X(03)00267-X
[7] M. Buratti and F. Merola, Dihedral Hamiltonian cycle system of the cocktail party graph, J. Combin. Des. 21 (2013) 1-23. doi:10.1002/jcd.21311
[8] A.J.W. Hilton, Hamiltonian decompositions of complete graphs, J. Combin. Theory (B) 36 (1984) 125-134. doi:10.1016/0095-8956(84)90020-0
[9] H. Jordon and J. Morris, Cyclic hamiltonian cycle systems of the complete graph minus a 1-factor, Discrete Math. 308 (2008) 2440-2449. doi:10.1016/j.disc.2007.05.009
[10] D.E. Lucas, Recreations Mathematiques, Vol.2 (Gauthiers Villars, Paris, 1982).