Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_4_a0, author = {Vijayakumar, Gurusamy Rengasamy}, title = {Characterizations of the {Family} of {All} {Generalized} {Line} {Graphs{\textemdash}Finite} and {Infinite{\textemdash}and} {Classification} of the {Family} of {All} {Graphs} {Whose} {Least} {Eigenvalues} \ensuremath{\geq} \ensuremath{-}2}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {637--648}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a0/} }
TY - JOUR AU - Vijayakumar, Gurusamy Rengasamy TI - Characterizations of the Family of All Generalized Line Graphs—Finite and Infinite—and Classification of the Family of All Graphs Whose Least Eigenvalues ≥ −2 JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 637 EP - 648 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a0/ LA - en ID - DMGT_2013_33_4_a0 ER -
%0 Journal Article %A Vijayakumar, Gurusamy Rengasamy %T Characterizations of the Family of All Generalized Line Graphs—Finite and Infinite—and Classification of the Family of All Graphs Whose Least Eigenvalues ≥ −2 %J Discussiones Mathematicae. Graph Theory %D 2013 %P 637-648 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a0/ %G en %F DMGT_2013_33_4_a0
Vijayakumar, Gurusamy Rengasamy. Characterizations of the Family of All Generalized Line Graphs—Finite and Infinite—and Classification of the Family of All Graphs Whose Least Eigenvalues ≥ −2. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 637-648. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a0/
[1] L.W. Beineke, Characterization of derived graphs, J. Combin. Theory 9 (1970) 129-135. doi:10.1016/S0021-9800(70)80019-9
[2] P.J. Cameron, J.M. Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic geometry, J. Algebra 43 (1976) 305-327. doi:10.1016/0021-8693(76)90162-9
[3] P.D. Chawathe and G.R. Vijayakumar, A characterization of signed graphs represented by root system D1, European J. Combin. 11 (1990) 523-533.
[4] D. Cvetković, M. Doob and S. Simić, Generalized line graphs, J. Graph Theory 5 (1981) 385-399. doi:10.1002/jgt.3190050408
[5] D. Cvetković, P. Rowlinson and S. Simić, Graphs with least eigenvalue −2: a new proof of the 31 forbidden subgraphs theorem, Des. Codes Cryptogr. 34 (2005) 229-240. doi:10.1007/s10623-004-4856-5
[6] F. Hirsch and G. Lacombe, Elements of Functional Analysis (Springer-Verlag, New York, 1999). doi:10.1007/978-1-4612-1444-1
[7] A.J. Hoffman, On graphs whose least eigenvalue exceeds −1 − √2, Linear Algebra Appl. 16 (1977) 153-165. doi:10.1016/0024-3795(77)90027-1
[8] J. Krausz, Démonstration nouvelle d’une théor`eme de Whitney sur les réseaux, Mat. Fiz. Lapok 50 (1943) 75-89.
[9] S.B. Rao, N.M. Singhi and K.S. Vijayan, The minimal forbidden subgraphs for generalized line graphs, Combinatorics and Graph Theory, Calcutta, 1980 S.B. Rao, Ed., Springer-Verlag, Lecture Notes in Math. 885 (1981) 459-472.
[10] A. Torgašev, A note on infinite generalized line graphs, in: Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad, 1983, D. Cvetković, I. Gutman, T. Pisanski, and R. Tošić (Ed(s)), (Univ. Novi Sad, 1984) 291-297.
[11] A. Torgašev, Infinite graphs with the least limiting eigenvalue greater than −2, Linear Algebra Appl. 82 (1986) 133-141. doi:10.1016/0024-3795(86)90146-1
[12] A.C.M. van Rooij and H.S. Wilf, The interchange graphs of a finite graph, Acta Math. Acad. Sci. Hungar. 16 (1965) 263-269. doi:10.1007/BF01904834
[13] G.R. Vijayakumar, A characterization of generalized line graphs and classification of graphs with least eigenvalue > −2, J. Comb. Inf. Syst. Sci. 9 (1984) 182-192.
[14] G.R. Vijayakumar, Equivalence of four descriptions of generalized line graphs, J. Graph Theory 67 (2011) 27-33. doi:10.1002/jgt.20509
[15] D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, New Jersey, USA, 2001).