Maximum Semi-Matching Problem in Bipartite Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 559-569
Voir la notice de l'article provenant de la source Library of Science
An (f, g)-semi-matching in a bipartite graph G = (U ∪ V, E) is a set of edges M ⊆ E such that each vertex u ∈ U is incident with at most f(u) edges of M, and each vertex v ∈ V is incident with at most g(v) edges of M. In this paper we give an algorithm that for a graph with n vertices and m edges, n ≤ m, constructs a maximum (f, g)-semi-matching in running time O(m · min{√(Σ_u ∈ U f(u)), √(Σ_v ∈ V g(v) )}). Using the reduction of [5] our result on maximum (f, g)-semi-matching problem directly implies an algorithm for the optimal semi-matching problem with running time O( √(n) m log n ).
Keywords:
semi-matching, quasi-matching, bipartite graph, computational complexity
@article{DMGT_2013_33_3_a5,
author = {Katreni\v{c}, J\'an and Semani\v{s}in, Gabriel},
title = {Maximum {Semi-Matching} {Problem} in {Bipartite} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {559--569},
publisher = {mathdoc},
volume = {33},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a5/}
}
TY - JOUR AU - Katrenič, Ján AU - Semanišin, Gabriel TI - Maximum Semi-Matching Problem in Bipartite Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 559 EP - 569 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a5/ LA - en ID - DMGT_2013_33_3_a5 ER -
Katrenič, Ján; Semanišin, Gabriel. Maximum Semi-Matching Problem in Bipartite Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 559-569. http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a5/