Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_3_a1, author = {Casas-Bautista, Enrique and Galeana-S\'anchez, Hortensia and Rojas-Monroy, Roc{\'\i}o}, title = {\ensuremath{\gamma}-Cycles {And} {Transitivity} {By} {Monochromatic} {Paths} {In} {Arc-Coloured} {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {493--507}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a1/} }
TY - JOUR AU - Casas-Bautista, Enrique AU - Galeana-Sánchez, Hortensia AU - Rojas-Monroy, Rocío TI - γ-Cycles And Transitivity By Monochromatic Paths In Arc-Coloured Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 493 EP - 507 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a1/ LA - en ID - DMGT_2013_33_3_a1 ER -
%0 Journal Article %A Casas-Bautista, Enrique %A Galeana-Sánchez, Hortensia %A Rojas-Monroy, Rocío %T γ-Cycles And Transitivity By Monochromatic Paths In Arc-Coloured Digraphs %J Discussiones Mathematicae. Graph Theory %D 2013 %P 493-507 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a1/ %G en %F DMGT_2013_33_3_a1
Casas-Bautista, Enrique; Galeana-Sánchez, Hortensia; Rojas-Monroy, Rocío. γ-Cycles And Transitivity By Monochromatic Paths In Arc-Coloured Digraphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 493-507. http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a1/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001).
[2] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
[3] C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27-31. doi:10.1016/0012-365X(90)90346-J
[4] P. Delgado-Escalante and H. Galena-Sánchez, Kernels and cycles’ subdivisions in arc-colored tournaments, Discuss. Math. Graph Theory 29 (2009) 101-117. doi:10.7151/dmgt.1435
[5] P. Delgado-Escalante and H. Galena-Sánchez, On monochromatic paths and bicolored subdigraphs in arc-colored tournaments, Discuss. Math. Graph Theory 31 (2011) 791-820. doi:10.7151/dmgt.1580
[6] P. Duchet, Graphes noyau - parfaits, Ann. Discrete Math. 9 (1980) 93-101. doi:10.1016/S0167-5060(08)70041-4
[7] P. Duchet, Classical perfect graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67-96.
[8] P. Duchet and H. Meynel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105. doi:10.1016/0012-365X(81)90264-8
[9] H. Galena-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112. doi:10.1016/0012-365X(95)00036-V
[10] H. Galena-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99. doi:10.1016/S0012-365X(97)00162-3
[11] H. Galena-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-254. doi:10.7151/dmgt.1123
[12] H. Galeana-Sánchez, J.J. García-Ruvalcaba, On graphs all of whose {C3, T3}-free arc colorations are kernel perfect, Discuss. Math. Graph Theory 21 (2001) 77-93. doi:10.7151/dmgt.1134
[13] H. Galena-Sánchez, G. Gaytán-Gómez and R. Rojas-Monroy, Monochromatic cycles and monochromatic paths in arc-coloured digraphs, Discuss. Math. Graph Theory 31 (2011) 283-292. doi:10.7151/dmgt.1545
[14] H. Galena-Sánchez, V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76. doi:10.1016/0012-365X(84)90131-6
[15] H. Galeana-Sánchez, V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265. doi:10.1016/0012-365X(86)90172-X
[16] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275-276. doi:10.1016/j.disc.2003.11.015
[17] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318. doi:10.1016/j.disc.2004.03.005
[18] H. Galeana-Sánchez, R. Rojas-Monroy, Independent domination by monochromatic paths in arc coloured bipartite tournaments, AKCE J. Graphs. Combin. 6 (2009) 267-285.
[19] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and monochromatic cycles in edge-coloured k-partite tournaments, Ars Combin. 97A (2010) 351-365.
[20] H. Galena-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs, Discuss. Math. Graph Theory 29 (2009) 337-347. doi:10.7151/dmgt.1450
[21] H. Galena-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs, Discuss. Math. Graph Theory 30 (2010) 545-553. doi:10.7151/dmgt.1512
[22] G. Hahn, P. Ille and R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99. doi:10.1016/j.disc.2003.10.024
[23] J.M. Le Bars, Counterexample of the 0 − 1 law for fragments of existential secondorder logic; an overview, Bull. Symbolic Logic 6 (2000) 67-82. doi:10.2307/421076
[24] J.M. Le Bars, The 0−1 law fails for frame satisfiability of propositional model logic, in: Proceedings of the 17th Symposium on Logic in Computer Science (2002) 225-234. doi:10.1109/LICS.2002.1029831
[25] J. von Leeuwen, Having a Grundy numbering is NP-complete, Report 207 Computer Science Department, Pennsylvania State University, University Park, PA (1976).
[26] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).
[27] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275. doi:10.1016/0095-8956(82)90047-8
[28] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin, Theory (B) 45 (1988) 108-111. doi:10.1016/0095-8956(88)90059-7
[29] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537-542. doi:10.7151/s11533-008-0044-6
[30] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93-99.