Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_2_a6, author = {Hammack, Richard H.}, title = {Frucht{\textquoteright}s {Theorem} for the {Digraph} {Factorial}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {329--336}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a6/} }
Hammack, Richard H. Frucht’s Theorem for the Digraph Factorial. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 329-336. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a6/
[1] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, 5th edition (CRC Press, Boca Raton, FL, 2011).
[2] R. Hammack, Direct product cancellation of digraphs, European J. Combin. 34 (2013) 846-858. doi:10.1016/j.ejc.2012.11.003
[3] R. Hammack, On direct product cancellation of graphs, Discrete Math. 309 (2009) 2538-2543. doi:10.1016/j.disc.2008.06.004
[4] R. Hammack and H. Smith, Zero divisors among digraphs, Graphs Combin. doi:10.1007/s00373-012-1248-x
[5] R. Hammack and K. Toman, Cancellation of direct products of digraphs, Discuss. Math. Graph Theory 30 (2010) 575-590. doi:10.7151/dmgt.1515
[6] R. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, 2nd edition, Series: Discrete Mathematics and its Applications (CRC Press, Boca Raton, FL, 2011).
[7] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics (Oxford Univ. Press, 2004). doi:10.1093/acprof:oso/9780198528173.001.0001
[8] L. Lovász, On the cancellation law among finite relational structures, Period. Math. Hungar. 1 (1971) 145-156. doi:10.1007/BF02029172