Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n)
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 289-306.

Voir la notice de l'article provenant de la source Library of Science

Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. VDIET colorings of complete bipartite graphs Km,n(m lt; n) are discussed in this paper. Particularly, the VDIET chromatic numbers of Km,n(1 ≤ m ≤ 7, m lt; n) as well as complete graphs Kn are obtained.
Keywords: complete bipartite graphs, IE-total coloring, vertex-distinguishing IE-total coloring, vertex-distinguishing IE-total chromatic number
@article{DMGT_2013_33_2_a3,
     author = {Chen, Xiang{\textquoteright}en and Gao, Yuping and Yao, Bing},
     title = {Vertex-Distinguishing {IE-Total} {Colorings} of {Complete} {Bipartite} {Graphs} {K\protect\textsubscript{m,N}(m} &lt; n)},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {289--306},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a3/}
}
TY  - JOUR
AU  - Chen, Xiang’en
AU  - Gao, Yuping
AU  - Yao, Bing
TI  - Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n)
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 289
EP  - 306
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a3/
LA  - en
ID  - DMGT_2013_33_2_a3
ER  - 
%0 Journal Article
%A Chen, Xiang’en
%A Gao, Yuping
%A Yao, Bing
%T Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n)
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 289-306
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a3/
%G en
%F DMGT_2013_33_2_a3
Chen, Xiang’en; Gao, Yuping; Yao, Bing. Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n). Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 289-306. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a3/

[1] P.N. Balister, B. Bollobás and R.H. Shelp, Vertex distinguishing colorings of graphs with Δ(G) = 2, Discrete Math. 252 (2002) 17-29. doi:10.1016/S0012-365X(01)00287-4

[2] P.N. Balister, O.M. Riordan and R.H. Schelp, Vertex distinguishing edge colorings of graphs, J. Graph Theory 42 (2003) 95-109. doi:10.1002/jgt.10076

[3] C. Bazgan, A. Harkat-Benhamdine, H. Li and M. Wo´zniak, On the vertexdistinguishing proper edge-colorings of graphs, J. Combin. Theory (B) 75 (1999) 288-301. doi:10.1006/jctb.1998.1884

[4] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (1997) 73-82. doi:10.1002/(SICI)1097-0118(199710)26:2h73::AID-JGT2i3.0.CO;2-C

[5] J. Černý, M. Horňák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31.

[6] X. Chen, Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cube, J. Northwest Univ. 41(5) (2005) 1-3.

[7] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: F. Harary, J.S. Maybee (Eds.), Graphs and Application, New York (1985) 147-162.

[8] M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301.

[9] M. Horňák and R. Soták, Asymptotic behaviour of the observability of Qn, Discrete Math. 176 (1997) 139-148. doi:10.1016/S0012-365X(96)00292-0

[10] M. Horňák and R. Soták, The fifth jump of the point-distinguishing chromatic index of Kn,n, Ars Combin. 42 (1996) 233-242.

[11] M. Horňák and R. Soták, Localization jumps of the point-distinguishing chromatic index of Kn,n, Discuss. Math. Graph Theory 17 (1997) 243-251. doi:10.7151/dmgt.1051

[12] M. Horňák and N. Zagaglia Salvi, On the point-distinguishing chromatic index of complete bipartite graphs, Ars Combin. 80 (2006) 75-85.

[13] N. Zagaglia Salvi, On the point-distinguishing chromatic index of Kn,n, Ars Combin. 25B (1988) 93-104.

[14] N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of Kn,n, Ars Combin. 29B (1990) 235-244.

[15] Z. Zhang, P. Qiu, B. Xu, J. Li, X.Chen and B.Yao, Vertex-distinguishing total colorings of graphs, Ars Combin. 87 (2008) 33-45.