Exact Expectation and Variance of Minimal Basis of Random Matroids
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 277-288

Voir la notice de l'article provenant de la source Library of Science

We formulate and prove a formula to compute the expected value of the minimal random basis of an arbitrary finite matroid whose elements are assigned weights which are independent and uniformly distributed on the interval [0, 1]. This method yields an exact formula in terms of the Tutte polynomial. We give a simple formula to find the minimal random basis of the projective geometry PG(r − 1, q).
Keywords: minimal basis, q-analog, finite projective geometry, Tutte polynomial
@article{DMGT_2013_33_2_a2,
     author = {Kordecki, Wojciech and {\L}yczkowska-Han\'ckowiak, Anna},
     title = {Exact {Expectation} and {Variance} of {Minimal} {Basis} of {Random} {Matroids}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {277--288},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a2/}
}
TY  - JOUR
AU  - Kordecki, Wojciech
AU  - Łyczkowska-Hanćkowiak, Anna
TI  - Exact Expectation and Variance of Minimal Basis of Random Matroids
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 277
EP  - 288
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a2/
LA  - en
ID  - DMGT_2013_33_2_a2
ER  - 
%0 Journal Article
%A Kordecki, Wojciech
%A Łyczkowska-Hanćkowiak, Anna
%T Exact Expectation and Variance of Minimal Basis of Random Matroids
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 277-288
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a2/
%G en
%F DMGT_2013_33_2_a2
Kordecki, Wojciech; Łyczkowska-Hanćkowiak, Anna. Exact Expectation and Variance of Minimal Basis of Random Matroids. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 277-288. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a2/