A Tight Bound on the Set Chromatic Number
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 461-465.

Voir la notice de l'article provenant de la source Library of Science

We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) gt; ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
Keywords: chromatic number, set coloring, set chromatic number, neighbor, distinguishing coloring
@article{DMGT_2013_33_2_a17,
     author = {Sereni, Jean-S\'ebastien and Yilma, Zelealem B.},
     title = {A {Tight} {Bound} on the {Set} {Chromatic} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {461--465},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a17/}
}
TY  - JOUR
AU  - Sereni, Jean-Sébastien
AU  - Yilma, Zelealem B.
TI  - A Tight Bound on the Set Chromatic Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 461
EP  - 465
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a17/
LA  - en
ID  - DMGT_2013_33_2_a17
ER  - 
%0 Journal Article
%A Sereni, Jean-Sébastien
%A Yilma, Zelealem B.
%T A Tight Bound on the Set Chromatic Number
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 461-465
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a17/
%G en
%F DMGT_2013_33_2_a17
Sereni, Jean-Sébastien; Yilma, Zelealem B. A Tight Bound on the Set Chromatic Number. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 461-465. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a17/

[1] G. Chartrand, F. Okamoto, C.W. Rasmussen, and P. Zhang, The set chromatic number of a graph, Discuss. Math. Graph Theory 29 (2009) 545-561. doi:10.7151/dmgt.1463

[2] G. Chartrand, F. Okamoto, and P. Zhang, Neighbor-distinguishing vertex colorings of graphs, J. Combin. Math. Combin. Comput. 74 (2010) 223-251.

[3] R. Gera, F. Okamoto, C. Rasmussen, and P. Zhang, Set colorings in perfect graphs, Math. Bohem. 136 (2011) 61-68.