A Tight Bound on the Set Chromatic Number
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 461-465
Cet article a éte moissonné depuis la source Library of Science
We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) gt; ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
Keywords:
chromatic number, set coloring, set chromatic number, neighbor, distinguishing coloring
@article{DMGT_2013_33_2_a17,
author = {Sereni, Jean-S\'ebastien and Yilma, Zelealem B.},
title = {A {Tight} {Bound} on the {Set} {Chromatic} {Number}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {461--465},
year = {2013},
volume = {33},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a17/}
}
Sereni, Jean-Sébastien; Yilma, Zelealem B. A Tight Bound on the Set Chromatic Number. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 461-465. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a17/
[1] G. Chartrand, F. Okamoto, C.W. Rasmussen, and P. Zhang, The set chromatic number of a graph, Discuss. Math. Graph Theory 29 (2009) 545-561. doi:10.7151/dmgt.1463
[2] G. Chartrand, F. Okamoto, and P. Zhang, Neighbor-distinguishing vertex colorings of graphs, J. Combin. Math. Combin. Comput. 74 (2010) 223-251.
[3] R. Gera, F. Okamoto, C. Rasmussen, and P. Zhang, Set colorings in perfect graphs, Math. Bohem. 136 (2011) 61-68.