Edge Dominating Sets and Vertex Covers
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 437-456.

Voir la notice de l'article provenant de la source Library of Science

Bipartite graphs with equal edge domination number and maximum matching cardinality are characterized. These two parameters are used to develop bounds on the vertex cover and total vertex cover numbers of graphs and a resulting chain of vertex covering, edge domination, and matching parameters is explored. In addition, the total vertex cover number is compared to the total domination number of trees and grid graphs.
Keywords: edge dominating set, matching, total dominating set, vertex cover
@article{DMGT_2013_33_2_a15,
     author = {Dutton, Ronald and Klostermeyer, William F.},
     title = {Edge {Dominating} {Sets} and {Vertex} {Covers}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {437--456},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a15/}
}
TY  - JOUR
AU  - Dutton, Ronald
AU  - Klostermeyer, William F.
TI  - Edge Dominating Sets and Vertex Covers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 437
EP  - 456
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a15/
LA  - en
ID  - DMGT_2013_33_2_a15
ER  - 
%0 Journal Article
%A Dutton, Ronald
%A Klostermeyer, William F.
%T Edge Dominating Sets and Vertex Covers
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 437-456
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a15/
%G en
%F DMGT_2013_33_2_a15
Dutton, Ronald; Klostermeyer, William F. Edge Dominating Sets and Vertex Covers. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 437-456. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a15/

[1] S. Arumugam and S. Velammal, Edge Domination in Graphs, Taiwanese J. Math. 2 (1998) 173-179.

[2] G. Chatrand, L. Lesniak and P. Zhang, Graphs and Digraphs (Chapman Hall/CRC, 2004).

[3] R. Dutton, Total vertex covers, Bull. Inst. Combin. Appl., to appear.

[4] H. Fernau and D.F. Manlove, Vertex and edge covers with clustering properties: complexity and algorithms, in: Algorithms and Complexity in Durham ACID 2006 (King’s College, London, 2006) 69-84.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[6] W. Klostermeyer, Some questions on graph protection, Graph Theory Notes N.Y. 57 (2010) 29-33.

[7] J.R. Lewis, Vertex-edge and edge-vertex parameters in graphs, Ph.D. Disseration (Clemson University, 2007).