A Note on Uniquely Embeddable Forests
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 193-201.

Voir la notice de l'article provenant de la source Library of Science

Let F be a forest of order n. It is well known that if F S_n, a star of order n, then there exists an embedding of F into its complement F̅. In this note we consider a problem concerning the uniqueness of such an embedding.
Keywords: packings of graphs, uniquely embeddable graphs
@article{DMGT_2013_33_1_a15,
     author = {Otfinowska, Justyna and Wo\'zniak, Mariusz},
     title = {A {Note} on {Uniquely} {Embeddable} {Forests}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {193--201},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a15/}
}
TY  - JOUR
AU  - Otfinowska, Justyna
AU  - Woźniak, Mariusz
TI  - A Note on Uniquely Embeddable Forests
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 193
EP  - 201
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a15/
LA  - en
ID  - DMGT_2013_33_1_a15
ER  - 
%0 Journal Article
%A Otfinowska, Justyna
%A Woźniak, Mariusz
%T A Note on Uniquely Embeddable Forests
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 193-201
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a15/
%G en
%F DMGT_2013_33_1_a15
Otfinowska, Justyna; Woźniak, Mariusz. A Note on Uniquely Embeddable Forests. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 193-201. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a15/

[1] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory (B) 25 (1978) 105-124. doi:10.1016/0095-8956(78)90030-8

[2] D. Burns and S. Schuster, Every (p, p − 2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279. doi:10.1002/jgt.3190010308

[3] D. Burns and S. Schuster, Embedding (n, n−1) graphs in their complements, Israel J. Math. 30 (1978) 313-320. doi:10.1007/BF02761996

[4] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combin. 4 (1977) 133-142.

[5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory (B) 25 (1978) 295-302. doi:10.1016/0095-8956(78)90005-9

[6] J. Otfinowska and M. Woźniak, A note on uniquely embeddable forests, Preprint MD (www.ii.uj.edu.pl/preMD/) 046 (2010).

[7] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241. doi:10.1016/0166-218X(94)90112-0

[8] M. Woźniak, Packing three trees, Discrete Math. 150 (1996) 393-402. doi:10.1016/0012-365X(95)00204-A

[9] M. Woźniak, A note on uniquely embeddable graphs, Discuss. Math. Graph Theory 18 (1998) 15-21. doi:10.7151/dmgt.1060

[10] M. Woźniak, Packing of graphs-some recent results and trends, Studies, Math. Series 16 (2003) 115-120.

[11] M. Woźniak, Packing of graphs and permutation-a survey, Discrete Math. 276 (2004) 379-391. doi:10.1016/S0012-365X(03)00296-6

[12] M. Woźniak, A note on uniquely embeddable cycles, Preprint MD (www.ii.uj.edu.pl/preMD/) 047 (2010).

[13] H.P. Yap, Packing of graphs-a survey, Discrete Math. 72 (1988) 395-404. doi:10.1016/0012-365X(88)90232-4