On Maximum Weight of a Bipartite Graph of Given Order and Size
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 147-165.

Voir la notice de l'article provenant de la source Library of Science

The weight of an edge xy of a graph is defined to be the sum of degrees of the vertices x and y. The weight of a graph G is the minimum of weights of edges of G. More than twenty years ago Erd˝os was interested in finding the maximum weight of a graph with n vertices and m edges. This paper presents a complete solution of a modification of the above problem in which a graph is required to be bipartite. It is shown that there is a function w*(n,m) such that the optimum weight is either w*(n,m) or w*(n,m) + 1.
Keywords: weight of an edge, weight of a graph, bipartite graph
@article{DMGT_2013_33_1_a12,
     author = {Hor\v{n}\'ak, Mirko and Jendrol{\textquoteright}, Stanislav and Schiermeyer, Ingo},
     title = {On {Maximum} {Weight} of a {Bipartite} {Graph} of {Given} {Order} and {Size}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {147--165},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a12/}
}
TY  - JOUR
AU  - Horňák, Mirko
AU  - Jendrol’, Stanislav
AU  - Schiermeyer, Ingo
TI  - On Maximum Weight of a Bipartite Graph of Given Order and Size
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 147
EP  - 165
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a12/
LA  - en
ID  - DMGT_2013_33_1_a12
ER  - 
%0 Journal Article
%A Horňák, Mirko
%A Jendrol’, Stanislav
%A Schiermeyer, Ingo
%T On Maximum Weight of a Bipartite Graph of Given Order and Size
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 147-165
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a12/
%G en
%F DMGT_2013_33_1_a12
Horňák, Mirko; Jendrol’, Stanislav; Schiermeyer, Ingo. On Maximum Weight of a Bipartite Graph of Given Order and Size. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 147-165. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a12/

[1] O.V. Borodin, Computing light edges in planar graphs, in: Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn (Ed(s)), (Physica-Verlag, Heidelberg, 1990) 137-144.

[2] H. Enomoto and K. Ota, Connected subgraphs with small degree sum in 3-connected planar graphs, J. Graph Theory 30 (1999) 191-203. doi:10.1002/(SICI)1097-0118(199903)30:3h191::AID-JGT4i3.0.CO;2-X

[3] I. Fabrici and S. Jendrol’, Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs Combin. 13 (1997) 245-250.

[4] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408. doi:10.1007/BF02764716

[5] J. Ivančo, The weight of a graph, in: Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, J. Neˇsetˇril and M. Fiedler (Ed(s)), (North- Holland, Amsterdam, 1992) 113-116.

[6] J. Ivančo and S. Jendrol’, On extremal problems concerning weights of edges of graphs, in: Sets, Graphs and Numbers, G. Halász, L. Lovász, D. Mikl´os and T. Sz˝onyi (Ed(s)), (North-Holland, Amsterdam, 1992) 399-410.

[7] E. Jucovič, Strengthening of a theorem about 3-polytopes, Geom. Dedicata 13 (1974) 233-237. doi:10.1007/BF00183214

[8] S. Jendrol’ and I. Schiermeyer, On a max-min problem concerning weights of edges, Combinatorica 21 (2001) 351-359. doi:10.1007/s004930100001

[9] S. Jendrol’, M. Tuhársky and H.-J. Voss, A Kotzig type theorem for large maps on surfaces, Tatra Mt. Math. Publ. 27 (2003) 153-162.

[10] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. ˇ Casopis. Slovensk. Akad. Vied 5 (1955) 111-113.

[11] J. Zaks, Extending Kotzig’s theorem, Israel J. Math. 45 (1983) 281-296. doi:10.1007/BF02804013