Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_1_a12, author = {Hor\v{n}\'ak, Mirko and Jendrol{\textquoteright}, Stanislav and Schiermeyer, Ingo}, title = {On {Maximum} {Weight} of a {Bipartite} {Graph} of {Given} {Order} and {Size}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {147--165}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a12/} }
TY - JOUR AU - Horňák, Mirko AU - Jendrol’, Stanislav AU - Schiermeyer, Ingo TI - On Maximum Weight of a Bipartite Graph of Given Order and Size JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 147 EP - 165 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a12/ LA - en ID - DMGT_2013_33_1_a12 ER -
%0 Journal Article %A Horňák, Mirko %A Jendrol’, Stanislav %A Schiermeyer, Ingo %T On Maximum Weight of a Bipartite Graph of Given Order and Size %J Discussiones Mathematicae. Graph Theory %D 2013 %P 147-165 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a12/ %G en %F DMGT_2013_33_1_a12
Horňák, Mirko; Jendrol’, Stanislav; Schiermeyer, Ingo. On Maximum Weight of a Bipartite Graph of Given Order and Size. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 147-165. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a12/
[1] O.V. Borodin, Computing light edges in planar graphs, in: Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn (Ed(s)), (Physica-Verlag, Heidelberg, 1990) 137-144.
[2] H. Enomoto and K. Ota, Connected subgraphs with small degree sum in 3-connected planar graphs, J. Graph Theory 30 (1999) 191-203. doi:10.1002/(SICI)1097-0118(199903)30:3h191::AID-JGT4i3.0.CO;2-X
[3] I. Fabrici and S. Jendrol’, Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs Combin. 13 (1997) 245-250.
[4] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408. doi:10.1007/BF02764716
[5] J. Ivančo, The weight of a graph, in: Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, J. Neˇsetˇril and M. Fiedler (Ed(s)), (North- Holland, Amsterdam, 1992) 113-116.
[6] J. Ivančo and S. Jendrol’, On extremal problems concerning weights of edges of graphs, in: Sets, Graphs and Numbers, G. Halász, L. Lovász, D. Mikl´os and T. Sz˝onyi (Ed(s)), (North-Holland, Amsterdam, 1992) 399-410.
[7] E. Jucovič, Strengthening of a theorem about 3-polytopes, Geom. Dedicata 13 (1974) 233-237. doi:10.1007/BF00183214
[8] S. Jendrol’ and I. Schiermeyer, On a max-min problem concerning weights of edges, Combinatorica 21 (2001) 351-359. doi:10.1007/s004930100001
[9] S. Jendrol’, M. Tuhársky and H.-J. Voss, A Kotzig type theorem for large maps on surfaces, Tatra Mt. Math. Publ. 27 (2003) 153-162.
[10] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. ˇ Casopis. Slovensk. Akad. Vied 5 (1955) 111-113.
[11] J. Zaks, Extending Kotzig’s theorem, Israel J. Math. 45 (1983) 281-296. doi:10.1007/BF02804013