A Note on Barnette’s Conjecture
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 133-137

Voir la notice de l'article provenant de la source Library of Science

Barnette conjectured that each planar, bipartite, cubic, and 3-connected graph is hamiltonian. We prove that this conjecture is equivalent to the statement that there is a constant c gt; 0 such that each graph G of this class contains a path on at least c|V (G)| vertices.
Keywords: planar graph, Hamilton cycle, Barnette’s Conjecture
@article{DMGT_2013_33_1_a10,
     author = {Harant, Jochen},
     title = {A {Note} on {Barnette{\textquoteright}s} {Conjecture}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {133--137},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a10/}
}
TY  - JOUR
AU  - Harant, Jochen
TI  - A Note on Barnette’s Conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 133
EP  - 137
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a10/
LA  - en
ID  - DMGT_2013_33_1_a10
ER  - 
%0 Journal Article
%A Harant, Jochen
%T A Note on Barnette’s Conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 133-137
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a10/
%G en
%F DMGT_2013_33_1_a10
Harant, Jochen. A Note on Barnette’s Conjecture. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 133-137. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a10/