On the Non-(p−1)-Partite Kp-Free Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 9-23

Voir la notice de l'article provenant de la source Library of Science

We say that a graph G is maximal K_p-free if G does not contain K_p but if we add any new edge e ∈ E(G̅) to G, then the graph G + e contains K_p. We study the minimum and maximum size of non-(p − 1)-partite maximal K_p-free graphs with n vertices. We also answer the interpolation question: for which values of n and m are there any n-vertex maximal K_p-free graphs of size m?
Keywords: extremal problems, maximal Kp-free graphs, Kp-saturated graphs
@article{DMGT_2013_33_1_a1,
     author = {Amin, Kinnari and Faudree, Jill and Gould, Ronald J. and Sidorowicz, El\.zbieta},
     title = {On the {Non-(p\ensuremath{-}1)-Partite} {K\protect\textsubscript{p}-Free} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {9--23},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a1/}
}
TY  - JOUR
AU  - Amin, Kinnari
AU  - Faudree, Jill
AU  - Gould, Ronald J.
AU  - Sidorowicz, Elżbieta
TI  - On the Non-(p−1)-Partite Kp-Free Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 9
EP  - 23
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a1/
LA  - en
ID  - DMGT_2013_33_1_a1
ER  - 
%0 Journal Article
%A Amin, Kinnari
%A Faudree, Jill
%A Gould, Ronald J.
%A Sidorowicz, Elżbieta
%T On the Non-(p−1)-Partite Kp-Free Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 9-23
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a1/
%G en
%F DMGT_2013_33_1_a1
Amin, Kinnari; Faudree, Jill; Gould, Ronald J.; Sidorowicz, Elżbieta. On the Non-(p−1)-Partite Kp-Free Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 9-23. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a1/