On the total restrained domination number of direct products of graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 629-641.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a graph. A total restrained dominating set is a set S ⊆ V where every vertex in V∖S is adjacent to a vertex in S as well as to another vertex in V∖S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by γ_r^t(G), is the smallest cardinality of a total restrained dominating set of G. We determine lower and upper bounds on the total restrained domination number of the direct product of two graphs. Also, we show that these bounds are sharp by presenting some infinite families of graphs that attain these bounds.
Keywords: total domination number, total restrained domination number, direct product of graphs
@article{DMGT_2012_32_4_a2,
     author = {Shiu, Wai and Chen, Hong-Yu and Chen, Xue-Gang and Sun, Pak},
     title = {On the total restrained domination number of direct products of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {629--641},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a2/}
}
TY  - JOUR
AU  - Shiu, Wai
AU  - Chen, Hong-Yu
AU  - Chen, Xue-Gang
AU  - Sun, Pak
TI  - On the total restrained domination number of direct products of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 629
EP  - 641
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a2/
LA  - en
ID  - DMGT_2012_32_4_a2
ER  - 
%0 Journal Article
%A Shiu, Wai
%A Chen, Hong-Yu
%A Chen, Xue-Gang
%A Sun, Pak
%T On the total restrained domination number of direct products of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 629-641
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a2/
%G en
%F DMGT_2012_32_4_a2
Shiu, Wai; Chen, Hong-Yu; Chen, Xue-Gang; Sun, Pak. On the total restrained domination number of direct products of graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 629-641. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a2/

[1] R. Chérifi, S. Gravier, X. Lagraula, C. Payan and I. Zigham, Domination number of cross products of paths, Discrete Appl. Math. 94 (1999) 101-139, doi: 10.1016/S0166-218X(99)00016-5.

[2] X.G. Chen, W.C. Shiu and H.Y. Chen, Trees with equal total domination and total restrained domination numbers, Discuss. Math. Graph. Theory 28 (2008) 59-66, doi: 10.7151/dmgt.1391.

[3] M. El-Zahar, S. Gravier and A. Klobucar, On the total domination number of cross products of graphs, Discrete Math. 308 (2008) 2025-2029, doi: 10.1016/j.disc.2007.04.034.

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs ( Marcel Dekker, New York, 1998).

[5] D.X. Ma, X.G. Chen and L. Sun, On total restrained domination in graphs, Czechoslovak Math. J. 55 (2005) 165-173, doi: 10.1007/s10587-005-0012-2.

[6] D.F. Rall, Total domination in categorical products of graphs, Discuss. Math. Graph Theory 25 (2005) 35-44, doi: 10.7151/dmgt.1257.

[7] M. Zwierzchowski, Total domination number of the conjunction of graphs, Discrete Math. 307 (2007) 1016-1020, doi: 10.1016/j.disc.2005.11.047.