Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a14, author = {Lema\'nska, Magdalena and Zuazua, Rita}, title = {Convex universal fixers}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {807--812}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a14/} }
Lemańska, Magdalena; Zuazua, Rita. Convex universal fixers. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 807-812. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a14/
[1] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303-318, doi: 10.7151/dmgt.1233.
[2] A.P. Burger and C.M. Mynhardt, Regular graphs are not universal fixers, Discrete Math. 310 (2010) 364-368, doi: 10.1016/j.disc.2008.09.016.
[3] E.J. Cockayne, R.G. Gibson and C.M. Mynhardt, Claw-free graphs are not universal fixers, Discrete Math. 309 (2009) 128-133, doi: 10.1016/j.disc.2007.12.053.
[4] R.G. Gibson, Bipartite graphs are not universal fixers, Discrete Math. 308 (2008) 5937-5943, doi: 10.1016/j.disc.2007.11.006.
[5] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Math. 24 (2004) 181-188.
[6] J. Cyman, M. Lemańska and J. Raczek, Graphs with convex domination number close to their order, Discuss. Math. Graph Theory 26 (2006) 307-316, doi: 10.7151/dmgt.1322.
[7] J. Raczek and M. Lemańska, A note of the weakly convex and convex domination numbers of a torus, Discrete Appl. Math. 158 (2010) 1708-1713, doi: 10.1016/j.dam.2010.06.001.
[8] M. Lemańska, I. González Yero and J.A. Rodríguez-Velázquez, Nordhaus-Gaddum results for a convex domination number of a graph, Acta Math. Hungar., to appear (2011).
[9] C.M. Mynhardt and Z. Xu, Domination in Prisms of Graphs: Universal Fixers, Util. Math. 78 (2009) 185-201.
[10] C.M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discuss. Math. Graph Theory 31 (2011) 5-23, doi: 10.7151/dmgt.1526.