Convex universal fixers
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 807-812
Voir la notice de l'article provenant de la source Library of Science
In [1] Burger and Mynhardt introduced the idea of universal fixers. Let G = (V, E) be a graph with n vertices and G' a copy of G. For a bijective function π: V(G) → V(G'), define the prism πG of G as follows: V(πG) = V(G) ∪ V(G') and E(πG) = E(G) ∪ E(G') ∪ M_π, where M_π = u π(u) | u ∈ V(G). Let γ(G) be the domination number of G. If γ(πG) = γ(G) for any bijective function π, then G is called a universal fixer. In [9] it is conjectured that the only universal fixers are the edgeless graphs K̅ₙ. In this work we generalize the concept of universal fixers to the convex universal fixers. In the second section we give a characterization for convex universal fixers (Theorem 6) and finally, we give an in infinite family of convex universal fixers for an arbitrary natural number n ≥ 10.
Keywords:
convex sets, dominating sets, universal fixers
@article{DMGT_2012_32_4_a14,
author = {Lema\'nska, Magdalena and Zuazua, Rita},
title = {Convex universal fixers},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {807--812},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a14/}
}
Lemańska, Magdalena; Zuazua, Rita. Convex universal fixers. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 807-812. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a14/