Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a12, author = {Klav\v{z}ar, Sandi and Meki\v{s}, Ga\v{s}per}, title = {On the rainbow connection of {Cartesian} products and their subgraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {783--793}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a12/} }
TY - JOUR AU - Klavžar, Sandi AU - Mekiš, Gašper TI - On the rainbow connection of Cartesian products and their subgraphs JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 783 EP - 793 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a12/ LA - en ID - DMGT_2012_32_4_a12 ER -
Klavžar, Sandi; Mekiš, Gašper. On the rainbow connection of Cartesian products and their subgraphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 783-793. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a12/
[1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad and A. Ramaswamy, Rainbow connection number of graph power and graph products, manuscript (2011) arXiv:1104.4190 [math.CO].
[2] Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) #R57.
[3] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (2011) 330-347, doi: 10.1007/s10878-009-9250-9.
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[5] T. Gologranc, G. Mekiš and I. Peterin, Rainbow connection and graph products, IMFM Preprint Series 49 (2011) #1149.
[6] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs: Second Edition (CRC Press, Boca Raton, 2011).
[7] W. Imrich, S. Klavžar and D.F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Products (A K Peters, Wellesley, 2008).
[8] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313-320, doi: 10.7151/dmgt.1547.
[9] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191, doi: 10.1002/jgt.20418.
[10] X. Li and Y. Sun, Characterize graphs with rainbow connection number m-2 and rainbow connection numbers of some graph operations, manuscript (2010).
[11] X. Li and Y. Sun, Rainbow connection of graphs - A survey, manuscript (2011) arXiv:1101.5747v1 [math.CO].
[12] I. Schiermeyer, Bounds for the rainbow connection number of graphs, Discuss. Math. Graph Theory 31 (2011) 387-395, doi: 10.7151/dmgt.1553.
[13] P. Winkler, Isometric embedding in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225.