Wiener and vertex PI indices of the strong product of graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 749-769
Voir la notice de l'article provenant de la source Library of Science
The Wiener index of a connected graph G, denoted by W(G), is defined as ½ ∑_u,v ∈ V(G)d_G(u,v). Similarly, the hyper-Wiener index of a connected graph G, denoted by WW(G), is defined as ½W(G) + ¼ ∑_u,v ∈ V(G) d²_G(u,v). The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, the exact formulae for Wiener, hyper-Wiener and vertex PI indices of the strong product G ⊠ K_m₀,m₁,...,m_r -1, where K_m₀,m₁,...,m_r -1 is the complete multipartite graph with partite sets of sizes m₀,m₁, ...,m_r -1, are obtained. Also lower bounds for Wiener and hyper-Wiener indices of strong product of graphs are established.
Keywords:
strong product, Wiener index, hyper-Wiener index, vertex PI index
@article{DMGT_2012_32_4_a10,
author = {Pattabiraman, K. and Paulraja, P.},
title = {Wiener and vertex {PI} indices of the strong product of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {749--769},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a10/}
}
TY - JOUR AU - Pattabiraman, K. AU - Paulraja, P. TI - Wiener and vertex PI indices of the strong product of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 749 EP - 769 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a10/ LA - en ID - DMGT_2012_32_4_a10 ER -
Pattabiraman, K.; Paulraja, P. Wiener and vertex PI indices of the strong product of graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 749-769. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a10/