Total vertex irregularity strength of disjoint union of Helm graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 427-434.

Voir la notice de l'article provenant de la source Library of Science

A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set 1,2,...,k in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We have determined an exact value of the total vertex irregularity strength of disjoint union of Helm graphs.
Keywords: vertex irregular total k-labeling, Helm graphs, total vertex irregularity strength
@article{DMGT_2012_32_3_a3,
     author = {Ahmad, Ali and Baskoro, E. and Imran, M.},
     title = {Total vertex irregularity strength of disjoint union of {Helm} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {427--434},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a3/}
}
TY  - JOUR
AU  - Ahmad, Ali
AU  - Baskoro, E.
AU  - Imran, M.
TI  - Total vertex irregularity strength of disjoint union of Helm graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 427
EP  - 434
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a3/
LA  - en
ID  - DMGT_2012_32_3_a3
ER  - 
%0 Journal Article
%A Ahmad, Ali
%A Baskoro, E.
%A Imran, M.
%T Total vertex irregularity strength of disjoint union of Helm graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 427-434
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a3/
%G en
%F DMGT_2012_32_3_a3
Ahmad, Ali; Baskoro, E.; Imran, M. Total vertex irregularity strength of disjoint union of Helm graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 427-434. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a3/

[1] A. Ahmad and M. Bača, On vertex irregular total labelings, Ars Combin. (to appear).

[2] A. Ahmad, K.M. Awan, I. Javaid, and Slamin, Total vertex irregularity strength of wheel related graphs, Australas. J. Combin. 51 (2011) 147-156.

[3] M. Anholcer, M. Kalkowski and J. Przybyło, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009) 6316-6317, doi: 10.1016/j.disc.2009.05.023.

[4] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388, doi: 10.1016/j.disc.2005.11.075.

[5] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241-254, doi: 10.1002/jgt.10158.

[6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.

[7] R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schlep, Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math. 76 (1988) 223-240, doi: 10.1016/0012-365X(89)90321-X.

[8] A. Frieze, R.J. Gould, M. Karoński, and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120-137, doi: 10.1002/jgt.10056.

[9] A. Gyárfás, The irregularity strength of $K_{m,m}$ is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9.

[10] S. Jendrol', M. Tkáč and Zs. Tuza, The irregularity strength and cost of the union of cliques, Discrete Math. 150 (1996) 179-186, doi: 10.1016/0012-365X(95)00186-Z.

[11] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 139-1321, doi: 10.1137/090774112.

[12] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313-323, doi: 10.1137/S0895480196314291.

[13] Nurdin, E.T. Baskoro, A.N.M. Salamn and N.N. Goas, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041.

[14] J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009) 511-516, doi: 10.1137/070707385.

[15] K. Wijaya and Slamin, Total vertex irregular labeling of wheels, fans, suns and friendship graphs, J. Combin. Math. Combin. Comput. 65 (2008) 103-112.

[16] K. Wijaya, Slamin, Surahmat and S. Jendrol, Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comput. 55 (2005) 129-136.