Total vertex irregularity strength of disjoint union of Helm graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 427-434

Voir la notice de l'article provenant de la source Library of Science

A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set 1,2,...,k in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We have determined an exact value of the total vertex irregularity strength of disjoint union of Helm graphs.
Keywords: vertex irregular total k-labeling, Helm graphs, total vertex irregularity strength
@article{DMGT_2012_32_3_a3,
     author = {Ahmad, Ali and Baskoro, E. and Imran, M.},
     title = {Total vertex irregularity strength of disjoint union of {Helm} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {427--434},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a3/}
}
TY  - JOUR
AU  - Ahmad, Ali
AU  - Baskoro, E.
AU  - Imran, M.
TI  - Total vertex irregularity strength of disjoint union of Helm graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 427
EP  - 434
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a3/
LA  - en
ID  - DMGT_2012_32_3_a3
ER  - 
%0 Journal Article
%A Ahmad, Ali
%A Baskoro, E.
%A Imran, M.
%T Total vertex irregularity strength of disjoint union of Helm graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 427-434
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a3/
%G en
%F DMGT_2012_32_3_a3
Ahmad, Ali; Baskoro, E.; Imran, M. Total vertex irregularity strength of disjoint union of Helm graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 427-434. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a3/