Generalizations of the tree packing conjecture
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 569-582
Voir la notice de l'article provenant de la source Library of Science
The Gyárfás tree packing conjecture asserts that any set of trees with 2,3,...,k vertices has an (edge-disjoint) packing into the complete graph on k vertices. Gyárfás and Lehel proved that the conjecture holds in some special cases. We address the problem of packing trees into k-chromatic graphs. In particular, we prove that if all but three of the trees are stars then they have a packing into any k-chromatic graph. We also consider several other generalizations of the conjecture.
Keywords:
packing, tree packing
@article{DMGT_2012_32_3_a14,
author = {Gerbner, D\'aniel and Keszegh, Bal\'azs and Palmer, Cory},
title = {Generalizations of the tree packing conjecture},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {569--582},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a14/}
}
TY - JOUR AU - Gerbner, Dániel AU - Keszegh, Balázs AU - Palmer, Cory TI - Generalizations of the tree packing conjecture JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 569 EP - 582 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a14/ LA - en ID - DMGT_2012_32_3_a14 ER -
Gerbner, Dániel; Keszegh, Balázs; Palmer, Cory. Generalizations of the tree packing conjecture. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 569-582. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a14/