Generalizations of the tree packing conjecture
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 569-582

Voir la notice de l'article provenant de la source Library of Science

The Gyárfás tree packing conjecture asserts that any set of trees with 2,3,...,k vertices has an (edge-disjoint) packing into the complete graph on k vertices. Gyárfás and Lehel proved that the conjecture holds in some special cases. We address the problem of packing trees into k-chromatic graphs. In particular, we prove that if all but three of the trees are stars then they have a packing into any k-chromatic graph. We also consider several other generalizations of the conjecture.
Keywords: packing, tree packing
@article{DMGT_2012_32_3_a14,
     author = {Gerbner, D\'aniel and Keszegh, Bal\'azs and Palmer, Cory},
     title = {Generalizations of the tree packing conjecture},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {569--582},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a14/}
}
TY  - JOUR
AU  - Gerbner, Dániel
AU  - Keszegh, Balázs
AU  - Palmer, Cory
TI  - Generalizations of the tree packing conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 569
EP  - 582
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a14/
LA  - en
ID  - DMGT_2012_32_3_a14
ER  - 
%0 Journal Article
%A Gerbner, Dániel
%A Keszegh, Balázs
%A Palmer, Cory
%T Generalizations of the tree packing conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 569-582
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a14/
%G en
%F DMGT_2012_32_3_a14
Gerbner, Dániel; Keszegh, Balázs; Palmer, Cory. Generalizations of the tree packing conjecture. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 569-582. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a14/