Generalized graph cordiality
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 557-567
Cet article a éte moissonné depuis la source Library of Science
Hovey introduced A-cordial labelings in [4] as a simultaneous generalization of cordial and harmonious labelings. If A is an abelian group, then a labeling f: V(G) → A of the vertices of some graph G induces an edge-labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one.
Keywords:
graph labeling, cordial graph, A-cordial, quasigroup
@article{DMGT_2012_32_3_a13,
author = {Pechenik, Oliver and Wise, Jennifer},
title = {Generalized graph cordiality},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {557--567},
year = {2012},
volume = {32},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a13/}
}
Pechenik, Oliver; Wise, Jennifer. Generalized graph cordiality. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 557-567. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a13/
[1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987) 201-207.
[2] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 18 (2011).
[3] R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Algebraic Discrete Methods 1 (1980) 382-404, doi: 10.1137/0601045.
[4] M. Hovey, A-cordial graphs, Discrete Math. 93 (1991) 183-194, doi: 10.1016/0012-365X(91)90254-Y.
[5] G. McAlexander, Undergraduate thesis, (Mary Baldwin College, c.2007).
[6] A. Riskin, ℤ²₂-cordiality of complete and complete bipartite graphs, (http://arxiv.org/abs/0709.0290v1), September 2007.