On super (a,d)-edge antimagic total labeling of certain families of graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 535-543.

Voir la notice de l'article provenant de la source Library of Science

A (p, q)-graph G is (a,d)-edge antimagic total if there exists a bijection f: V(G) ∪ E(G) → 1, 2,...,p + q such that the edge weights Λ(uv) = f(u) + f(uv) + f(v), uv ∈ E(G) form an arithmetic progression with first term a and common difference d. It is said to be a super (a, d)-edge antimagic total if the vertex labels are 1, 2,..., p and the edge labels are p + 1, p + 2,...,p + q. In this paper, we study the super (a,d)-edge antimagic total labeling of special classes of graphs derived from copies of generalized ladder, fan, generalized prism and web graph.
Keywords: edge weight, magic labeling, antimagic labeling, ladder, fan graph, prism and web graph
@article{DMGT_2012_32_3_a11,
     author = {Roushini Leely Pushpam, P. and Saibulla, A.},
     title = {On super (a,d)-edge antimagic total labeling of certain families of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {535--543},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a11/}
}
TY  - JOUR
AU  - Roushini Leely Pushpam, P.
AU  - Saibulla, A.
TI  - On super (a,d)-edge antimagic total labeling of certain families of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 535
EP  - 543
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a11/
LA  - en
ID  - DMGT_2012_32_3_a11
ER  - 
%0 Journal Article
%A Roushini Leely Pushpam, P.
%A Saibulla, A.
%T On super (a,d)-edge antimagic total labeling of certain families of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 535-543
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a11/
%G en
%F DMGT_2012_32_3_a11
Roushini Leely Pushpam, P.; Saibulla, A. On super (a,d)-edge antimagic total labeling of certain families of graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 535-543. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a11/

[1] M. Bača and C. Barrientos, Graceful and edge antimagic labelings, Ars Combin. 96 (2010) 505-513.

[2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New construction of magic and antimagic graph labeling, Util. Math. 60 (2001) 229-239.

[3] H. Enomoto, A.S. Llodo, T. Nakamigawa and G. Ringel, Super edge magic graphs, SUT J. Math. 34 (1998) 105-109.

[4] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168, doi: 10.1016/S0012-365X(00)00314-9.

[5] J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010) #DS6.

[6] F. Harrary, Graph Theory ( Addison-Wesley, 1994).

[7] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Boston, San Diego, New York, London, 1990).

[8] S.M. Hegde and Sudhakar Shetty, On magic graphs, Australas. J. Combin. 27 (2003) 277-284.

[9] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1.

[10] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. Eleventh Australian Workshop Combin. Algor., Hunrer Valley, Australia (2000) 179-189.

[11] K.A. Sugeng and M. Miller, Relationship between adjacency matrices and super (a, d)-edge antimagic total labelings of graphs, J. Combin. Math. Combin. Comput. 55 (2005) 71-82.

[12] K.A. Sugeng, M. Miller and M. Bača, Super edge antimagic total labelings, Util. Math. 71 (2006) 131-141.