Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 517-533.

Voir la notice de l'article provenant de la source Library of Science

The oriented chromatic number of an oriented graph ^→G is the minimum order of an oriented graph ^→H such that ^→G admits a homomorphism to ^→H. The oriented chromatic number of an undirected graph G is then the greatest oriented chromatic number of its orientations.
Keywords: product graph, oriented coloring, oriented chromatic number
@article{DMGT_2012_32_3_a10,
     author = {Sopena, \'Eric},
     title = {Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {517--533},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a10/}
}
TY  - JOUR
AU  - Sopena, Éric
TI  - Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 517
EP  - 533
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a10/
LA  - en
ID  - DMGT_2012_32_3_a10
ER  - 
%0 Journal Article
%A Sopena, Éric
%T Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 517-533
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a10/
%G en
%F DMGT_2012_32_3_a10
Sopena, Éric. Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 517-533. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a10/

[1] N.R. Aravind, N. Narayanan and C.R. Subramanian. Oriented colouring of some graph products, Discuss. Math. Graph Theory 31 (2011) 675-686, doi: 10.7151/dmgt.1572.

[2] N.R. Aravind and C.R. Subramanian. Forbidden subgraph colorings and the oriented chromatic number, in: Proc. 20th Int. Workshop on Combinatorial Algorithms, IWOCA'09, Lecture Notes in Comput. Sci. 5874 (2009) 60-71, doi: 10.1007/978-3-642-10217-2_9.

[3] L. Esperet and P. Ochem, Oriented colorings of 2-outerplanar graphs, Inform. Proc. Letters 101 (2007) 215-219, doi: 10.1016/j.ipl.2006.09.007.

[4] G. Fertin, A. Raspaud and A. Roychowdhury, On the oriented chromatic number of grids, Inform. Proc. Letters 85 (2003) 261-266, doi: 10.1016/S0020-0190(02)00405-2.

[5] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley Sons, New York, 2000).

[6] A.V. Kostochka, É. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340, doi: 10.1002/(SICI)1097-0118(199704)24:4331::AID-JGT5>3.0.CO;2-P

[7] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).

[8] P. Ochem, Oriented colorings of triangle-free planar graphs, Inform. Proc. Letters 92 (2004) 71-76, doi: 10.1016/j.ipl.2004.06.012.

[9] P. Ochem. Negative results on acyclic improper colorings, Proc. Euro Comb'05, Discrete Math. Theoret. Comput. Sci., Conference Volume AE (2005) 357-362.

[10] A. Pinlou and É. Sopena, Oriented vertex and arc colorings of outerplanar graphs, Inform. Proc. Letters 100 (2006) 97-104, doi: 10.1016/j.ipl.2006.06.012.

[11] A. Raspaud and É. Sopena, Good and semi-strong colorings of oriented planar graphs, Inform. Proc. Letters 51 (1994) 171-174, doi: 10.1016/0020-0190(94)00088-3.

[12] É. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369, doi: 10.1016/S0012-365X(00)00216-8.

[13] É. Sopena and L. Vignal, A note on the oriented chromatic number of graphs with maximum degree three, Research Report (1996), http://www.labri.fr/perso/sopena/.

[14] D.R. Wood, On the oriented chromatic number of dense graphs, Contributions to Discrete Math. 2 (2007) 145-152.