Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 517-533

Voir la notice de l'article provenant de la source Library of Science

The oriented chromatic number of an oriented graph ^→G is the minimum order of an oriented graph ^→H such that ^→G admits a homomorphism to ^→H. The oriented chromatic number of an undirected graph G is then the greatest oriented chromatic number of its orientations.
Keywords: product graph, oriented coloring, oriented chromatic number
@article{DMGT_2012_32_3_a10,
     author = {Sopena, \'Eric},
     title = {Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {517--533},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a10/}
}
TY  - JOUR
AU  - Sopena, Éric
TI  - Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 517
EP  - 533
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a10/
LA  - en
ID  - DMGT_2012_32_3_a10
ER  - 
%0 Journal Article
%A Sopena, Éric
%T Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 517-533
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a10/
%G en
%F DMGT_2012_32_3_a10
Sopena, Éric. Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 517-533. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a10/