Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_2_a7, author = {Vinh, Le}, title = {On kaleidoscopic pseudo-randomness of finite {Euclidean} graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {279--287}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a7/} }
Vinh, Le. On kaleidoscopic pseudo-randomness of finite Euclidean graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 279-287. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a7/
[1] N. Alon and J.H. Spencer, The Probabilistic Method (Willey-Interscience, 2000).
[2] E. Bannai, O. Shimabukuro and H. Tanaka, Finite Euclidean graphs and Ramanujan graphs, Discrete Math. 309 (2009) 6126-6134, doi: 10.1016/j.disc.2009.06.008.
[3] D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero, Distance graphs in vector spaces over finite fields, coloring and pseudo-randomness preprint, arXiv:0804.3036v1.
[4] A. Iosevich and M. Rudnev, Erdös distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007) 6127-6142, doi: 10.1090/S0002-9947-07-04265-1.
[5] M. Krivelevich and B. Sudakov, Pseudo-random graphs, in: Conference on Finite and Infinite Sets Budapest, Bolyai Society Mathematical Studies X, (Springer, Berlin 2006) 1-64.
[6] S. Li and L.A. Vinh, On the spectrum of unitary finite-Euclidean graphs, Ars Combinatoria, to appear.
[7] A. Medrano, P. Myers, H.M. Stark and A. Terras, Finite analogues of Euclidean space, Journal of Computational and Applied Mathematics 68 ( 1996) 221-238, doi: 10.1016/0377-0427(95)00261-8.
[8] L.A. Vinh and D.P. Dung, Explicit tough Ramsey graphs, in: Proceedings of the International Conference on Relations, Orders and Graphs: Interaction with Computer Science, ( Nouha Editions, 2008) 139-146.
[9] L.A. Vinh, Explicit Ramsey graphs and Erdös distance problem over finite Euclidean and non-Euclidean spaces, Electronic J. Combin. 15 (2008) R5.
[10] L.A. Vinh, Szemeredi-Trotter type theorem and sum-product estimate in finite fields, European J. Combin., to appear.
[11] V. Vu, Sum-product estimates via directed expanders, Mathematical Research Letters, 15 (2008) 375-388.