On kaleidoscopic pseudo-randomness of finite Euclidean graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 279-287.

Voir la notice de l'article provenant de la source Library of Science

D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero (2008) showed that the distance graphs has kaleidoscopic pseudo-random property, i.e. sufficiently large subsets of d-dimensional vector spaces over finite fields contain every possible finite configurations. In this paper we study the kaleidoscopic pseudo-randomness of finite Euclidean graphs using probabilistic methods.
Keywords: finite Euclidean graphs, kaleidoscopic pseudo-randomness
@article{DMGT_2012_32_2_a7,
     author = {Vinh, Le},
     title = {On kaleidoscopic pseudo-randomness of finite {Euclidean} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {279--287},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a7/}
}
TY  - JOUR
AU  - Vinh, Le
TI  - On kaleidoscopic pseudo-randomness of finite Euclidean graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 279
EP  - 287
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a7/
LA  - en
ID  - DMGT_2012_32_2_a7
ER  - 
%0 Journal Article
%A Vinh, Le
%T On kaleidoscopic pseudo-randomness of finite Euclidean graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 279-287
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a7/
%G en
%F DMGT_2012_32_2_a7
Vinh, Le. On kaleidoscopic pseudo-randomness of finite Euclidean graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 279-287. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a7/

[1] N. Alon and J.H. Spencer, The Probabilistic Method (Willey-Interscience, 2000).

[2] E. Bannai, O. Shimabukuro and H. Tanaka, Finite Euclidean graphs and Ramanujan graphs, Discrete Math. 309 (2009) 6126-6134, doi: 10.1016/j.disc.2009.06.008.

[3] D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero, Distance graphs in vector spaces over finite fields, coloring and pseudo-randomness preprint, arXiv:0804.3036v1.

[4] A. Iosevich and M. Rudnev, Erdös distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007) 6127-6142, doi: 10.1090/S0002-9947-07-04265-1.

[5] M. Krivelevich and B. Sudakov, Pseudo-random graphs, in: Conference on Finite and Infinite Sets Budapest, Bolyai Society Mathematical Studies X, (Springer, Berlin 2006) 1-64.

[6] S. Li and L.A. Vinh, On the spectrum of unitary finite-Euclidean graphs, Ars Combinatoria, to appear.

[7] A. Medrano, P. Myers, H.M. Stark and A. Terras, Finite analogues of Euclidean space, Journal of Computational and Applied Mathematics 68 ( 1996) 221-238, doi: 10.1016/0377-0427(95)00261-8.

[8] L.A. Vinh and D.P. Dung, Explicit tough Ramsey graphs, in: Proceedings of the International Conference on Relations, Orders and Graphs: Interaction with Computer Science, ( Nouha Editions, 2008) 139-146.

[9] L.A. Vinh, Explicit Ramsey graphs and Erdös distance problem over finite Euclidean and non-Euclidean spaces, Electronic J. Combin. 15 (2008) R5.

[10] L.A. Vinh, Szemeredi-Trotter type theorem and sum-product estimate in finite fields, European J. Combin., to appear.

[11] V. Vu, Sum-product estimates via directed expanders, Mathematical Research Letters, 15 (2008) 375-388.