A characterization of complete tripartite degree-magic graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 243-253.

Voir la notice de l'article provenant de la source Library of Science

A graph is called degree-magic if it admits a labelling of the edges by integers 1, 2,..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1+ |E(G)|)/2*deg(v). Degree-magic graphs extend supermagic regular graphs. In this paper we characterize complete tripartite degree-magic graphs.
Keywords: supermagic graphs, degree-magic graphs, complete tripartite graphs
@article{DMGT_2012_32_2_a3,
     author = {Bezegov\'a, \v{L}udmila and Ivan\v{c}o, Jaroslav},
     title = {A characterization of complete tripartite degree-magic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a3/}
}
TY  - JOUR
AU  - Bezegová, Ľudmila
AU  - Ivančo, Jaroslav
TI  - A characterization of complete tripartite degree-magic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 243
EP  - 253
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a3/
LA  - en
ID  - DMGT_2012_32_2_a3
ER  - 
%0 Journal Article
%A Bezegová, Ľudmila
%A Ivančo, Jaroslav
%T A characterization of complete tripartite degree-magic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 243-253
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a3/
%G en
%F DMGT_2012_32_2_a3
Bezegová, Ľudmila; Ivančo, Jaroslav. A characterization of complete tripartite degree-magic graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a3/

[1] Ľ. Bezegová and J. Ivančo, An extension of regular supermagic graphs, Discrete Math. 310 (2010) 3571-3578, doi: 10.1016/j.disc.2010.09.005.

[2] Ľ. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428-2436, doi: 10.1016/j.disc.2011.07.014.

[3] T. Bier and A. Kleinschmidt, Centrally symmetric and magic rectangles, Discrete Math. 176 (1997) 29-42, doi: 10.1016/S0012-365X(96)00284-1.

[4] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010) #DS6.

[5] T.R. Hagedorn, Magic rectangles revisited, Discrete Math. 207 (1999) 65-72, doi: 10.1016/S0012-365X(99)00041-2.

[6] J. Ivančo, On supermagic regular graphs, Math. Bohemica 125 (2000) 99-114.

[7] J. Sedláček, Problem 27. Theory of graphs and its applications, Proc. Symp. Smolenice, Praha (1963) 163-164.

[8] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031-1059, doi: 10.4153/CJM-1966-104-7.

[9] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427-438, doi: 10.4153/CJM-1967-035-9.