Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_2_a3, author = {Bezegov\'a, \v{L}udmila and Ivan\v{c}o, Jaroslav}, title = {A characterization of complete tripartite degree-magic graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {243--253}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a3/} }
TY - JOUR AU - Bezegová, Ľudmila AU - Ivančo, Jaroslav TI - A characterization of complete tripartite degree-magic graphs JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 243 EP - 253 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a3/ LA - en ID - DMGT_2012_32_2_a3 ER -
Bezegová, Ľudmila; Ivančo, Jaroslav. A characterization of complete tripartite degree-magic graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a3/
[1] Ľ. Bezegová and J. Ivančo, An extension of regular supermagic graphs, Discrete Math. 310 (2010) 3571-3578, doi: 10.1016/j.disc.2010.09.005.
[2] Ľ. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428-2436, doi: 10.1016/j.disc.2011.07.014.
[3] T. Bier and A. Kleinschmidt, Centrally symmetric and magic rectangles, Discrete Math. 176 (1997) 29-42, doi: 10.1016/S0012-365X(96)00284-1.
[4] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010) #DS6.
[5] T.R. Hagedorn, Magic rectangles revisited, Discrete Math. 207 (1999) 65-72, doi: 10.1016/S0012-365X(99)00041-2.
[6] J. Ivančo, On supermagic regular graphs, Math. Bohemica 125 (2000) 99-114.
[7] J. Sedláček, Problem 27. Theory of graphs and its applications, Proc. Symp. Smolenice, Praha (1963) 163-164.
[8] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031-1059, doi: 10.4153/CJM-1966-104-7.
[9] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427-438, doi: 10.4153/CJM-1967-035-9.