Intersection graph of gamma sets in the total graph
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 341-356.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider the intersection graph I_Γ(ℤₙ) of gamma sets in the total graph on ℤₙ. We characterize the values of n for which I_Γ(ℤₙ) is complete, bipartite, cycle, chordal and planar. Further, we prove that I_Γ(ℤₙ) is an Eulerian, Hamiltonian and as well as a pancyclic graph. Also we obtain the value of the independent number, the clique number, the chromatic number, the connectivity and some domination parameters of I_Γ(ℤₙ).
Keywords: total graph, gamma sets, intersection graph, Hamiltonian, coloring, connectivity, domination number
@article{DMGT_2012_32_2_a12,
     author = {Chelvam, T. and Asir, T.},
     title = {Intersection graph of gamma sets in the total graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {341--356},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a12/}
}
TY  - JOUR
AU  - Chelvam, T.
AU  - Asir, T.
TI  - Intersection graph of gamma sets in the total graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 341
EP  - 356
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a12/
LA  - en
ID  - DMGT_2012_32_2_a12
ER  - 
%0 Journal Article
%A Chelvam, T.
%A Asir, T.
%T Intersection graph of gamma sets in the total graph
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 341-356
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a12/
%G en
%F DMGT_2012_32_2_a12
Chelvam, T.; Asir, T. Intersection graph of gamma sets in the total graph. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 341-356. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a12/

[1] S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009) 2224-2228, doi: 10.1016/j.jpaa.2009.03.013.

[2] D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719, doi: 10.1016/j.jalgebra.2008.06.028.

[3] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447, doi: 10.1006/jabr.1998.7840.

[4] N. Ashrafia, H.R. Maimanibc, M.R. Pournakicd and S. Yassemie, Unit graphs associated with rings, Comm. Algebra 38 (2010) 2851?-2871, doi: 10.1080/00927870903095574.

[5] R. Balakrishnan and K. Ranganathan, A text book of Graph Theory, (Springer, 2000).

[6] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Electronic Notes in Discrete Math. 23 (2005) 23-32, doi: 10.1016/j.endm.2005.06.104.

[7] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009) 5381-5392, doi: 10.1016/j.disc.2008.11.034.

[8] G. Chartrand and L. Lesniak, Graphs and Digraphs, (Chapman Hall/CRC., 2000).

[9] G. Chartrand and P. Zhang, Chromatic Graph Theory, (CRC Press, 2009).

[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamental of Domination in Graphs, (Marcel Dekker Inc., 1998).

[11] H.R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801-1808, doi: 10.1016/j.jalgebra.2007.02.003.

[12] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, (SIAM Monographs on Discrete Math. Applications., 1999), doi: 10.1137/1.9780898719802.

[13] T. Tamizh Chelvam and T. Asir, A note on total graph of ℤₙ, J. Discrete Math. Sci. Cryptography 14 (2011) 1-7.

[14] T. Tamizh Chelvam and T. Asir, Domination in the total graph on ℤₙ, J. Combin. Math. Combin. Comput., submitted.

[15] A.T. White, Graphs, Groups and Surfaces, (North-Holland, Amsterdam., 1973).