On Ramsey $(K_{1,2}, Kₙ)$-minimal graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 331-339.

Voir la notice de l'article provenant de la source Library of Science

Let F be a graph and let , denote nonempty families of graphs. We write F → (,) if in any 2-coloring of edges of F with red and blue, there is a red subgraph isomorphic to some graph from G or a blue subgraph isomorphic to some graph from H. The graph F without isolated vertices is said to be a (,)-minimal graph if F → (,) and F - e not → (,) for every e ∈ E(F).
Keywords: Ramsey minimal graph, edge coloring, 1-factor, complete graph
@article{DMGT_2012_32_2_a11,
     author = {Ha{\l}uszczak, Mariusz},
     title = {On {Ramsey} $(K_{1,2}, Kₙ)$-minimal graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {331--339},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a11/}
}
TY  - JOUR
AU  - Hałuszczak, Mariusz
TI  - On Ramsey $(K_{1,2}, Kₙ)$-minimal graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 331
EP  - 339
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a11/
LA  - en
ID  - DMGT_2012_32_2_a11
ER  - 
%0 Journal Article
%A Hałuszczak, Mariusz
%T On Ramsey $(K_{1,2}, Kₙ)$-minimal graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 331-339
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a11/
%G en
%F DMGT_2012_32_2_a11
Hałuszczak, Mariusz. On Ramsey $(K_{1,2}, Kₙ)$-minimal graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 331-339. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a11/

[1] E.T. Baskoro, L. Yulianti and H. Assiyatun, Ramsey (K_{1, 2}, C₄)-minimal graphs, J. Combin. Math. Combin. Comp. 65 (2008) 79-90.

[2] E.T. Baskoro, T. Vetrík and L. Yulianti, Ramsey (K_{1, 2}, C₄)-minimal graphs, Discuss. Math. Graph Theory, 30 (2010) 637-649, doi: 10.7151/dmgt.1519.

[3] M. Borowiecki, M. Hałuszczak and E. Sidorowicz, On Ramsey minimal graphs, Discrete Math. 286 (2004) 37-43, doi: 10.1016/j.disc.2003.11.043.

[4] M. Borowiecki, I. Schiermeyer and E. Sidorowicz, Ramsey (K_{1, 2}, K₃)-minimal graphs, Electron. J. Combin. 12 (2005) #R20.

[5] S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Ramsey-minimal graphs for the pair star, connected graph, Studia Sci. Math. Hungar. 15 (1980) 265-273.

[6] S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Ramsey-minimal graphs for star-forests, Discrete Math. 33 (1981) 227-237, doi: 10.1016/0012-365X(81)90266-1.

[7] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977) 93-93.

[8] R. Diestel, Graph Theory, (2nd ed., Springer - Verlag, New York, 2000).

[9] T. Łuczak, On Ramsey minimal graphs, Electron. J. Combin. 1 (1994) #R4.

[10] I. Mengersen, J. Oeckermann, Matching-star Ramsey sets, Discrete Applied Math. 95 (1999) 417-424, doi: 10.1016/S0166-218X(99)00089-X.