p-Wiener intervals and p-Wiener free intervals
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 121-127
Voir la notice de l'article provenant de la source Library of Science
A positive integer n is said to be Wiener graphical, if there exists a graph G with Wiener index n. In this paper, we prove that any positive integer n(≠ 2,5) is Wiener graphical. For any positive integer p, an interval [a,b] is said to be a p-Wiener interval if for each positive integer n ∈ [a,b] there exists a graph G on p vertices such that W(G) = n. For any positive integer p, an interval [a,b] is said to be p-Wiener free interval (p-hyper-Wiener free interval) if there exist no graph G on p vertices with a ≤ W(G) ≤ b (a ≤ WW(G) ≤ b). In this paper, we determine some p-Wiener intervals and p-Wiener free intervals for some fixed positive integer p.
Keywords:
Wiener index of a graph, Wiener graphical, p-Wiener interval, p-Wiener free interval, hyper-Wiener index of a graph, radius, diameter
@article{DMGT_2012_32_1_a9,
author = {Kathiresan, Kumarappan and Arockiaraj, S.},
title = {p-Wiener intervals and {p-Wiener} free intervals},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {121--127},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a9/}
}
TY - JOUR AU - Kathiresan, Kumarappan AU - Arockiaraj, S. TI - p-Wiener intervals and p-Wiener free intervals JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 121 EP - 127 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a9/ LA - en ID - DMGT_2012_32_1_a9 ER -
Kathiresan, Kumarappan; Arockiaraj, S. p-Wiener intervals and p-Wiener free intervals. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 121-127. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a9/