p-Wiener intervals and p-Wiener free intervals
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 121-127.

Voir la notice de l'article provenant de la source Library of Science

A positive integer n is said to be Wiener graphical, if there exists a graph G with Wiener index n. In this paper, we prove that any positive integer n(≠ 2,5) is Wiener graphical. For any positive integer p, an interval [a,b] is said to be a p-Wiener interval if for each positive integer n ∈ [a,b] there exists a graph G on p vertices such that W(G) = n. For any positive integer p, an interval [a,b] is said to be p-Wiener free interval (p-hyper-Wiener free interval) if there exist no graph G on p vertices with a ≤ W(G) ≤ b (a ≤ WW(G) ≤ b). In this paper, we determine some p-Wiener intervals and p-Wiener free intervals for some fixed positive integer p.
Keywords: Wiener index of a graph, Wiener graphical, p-Wiener interval, p-Wiener free interval, hyper-Wiener index of a graph, radius, diameter
@article{DMGT_2012_32_1_a9,
     author = {Kathiresan, Kumarappan and Arockiaraj, S.},
     title = {p-Wiener intervals and {p-Wiener} free intervals},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {121--127},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a9/}
}
TY  - JOUR
AU  - Kathiresan, Kumarappan
AU  - Arockiaraj, S.
TI  - p-Wiener intervals and p-Wiener free intervals
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 121
EP  - 127
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a9/
LA  - en
ID  - DMGT_2012_32_1_a9
ER  - 
%0 Journal Article
%A Kathiresan, Kumarappan
%A Arockiaraj, S.
%T p-Wiener intervals and p-Wiener free intervals
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 121-127
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a9/
%G en
%F DMGT_2012_32_1_a9
Kathiresan, Kumarappan; Arockiaraj, S. p-Wiener intervals and p-Wiener free intervals. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 121-127. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a9/

[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley Reading, 1990).

[2] P.G. Doyle and J.L. Snell, Random Walks and Electric Networks (Math. Assoc., Washington, 1984).

[3] R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (101) 1976.

[4] D. Goldman, S. Istrail, G. Lancia and A. Picolboni, Algorithmic strategies in Combinatorial Chemistry, in: 11th ACM-SIAM Symposium, Discrete Algorithms (2000) 275-284.

[5] I. Gutman, Y.N. Yeh, S.L. Lee and J.C. Chen, Wiener number of dendrimers, Comm. Math. Chem., 30 (1994) 103-115.

[6] I. Gutman, Relation between hyper-Wiener and Wiener index, Chem. Phys. Lett. 364 (2002) 352-356, doi: 10.1016/S0009-2614(02)01343-X.

[7] KM. Kathiresan and S. Arockiaraj, Wiener indices of generalized complementary prisms, Bull. Inst. Combin. Appl. 59 (2010) 31-45.

[8] S. Klavžar, P. Zigert and I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24 (2000) 229-233, doi: 10.1016/S0097-8485(99)00062-5.

[9] Liu Mu-huo and Xuezhong Tan, The first to (k+1)-th smallest Wiener (Hyper -Wiener) indices of connected graphs, Kragujevac J. Math. 32 (2009) 109-115.

[10] S. Nikolić, N. Trinajstić and Z. Mihalić, The Wiener index: Development and applications, Croat. Chem. Acta. 68 (1995) 105-129.

[11] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.