The projective plane crossing number of the circulant graph C(3k;{1,k})
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 91-108

Voir la notice de l'article provenant de la source Library of Science

In this paper we prove that the projective plane crossing number of the circulant graph C(3k;1,k) is k-1 for k ≥ 4, and is 1 for k = 3.
Keywords: crossing number, circulant graph, projective plane
@article{DMGT_2012_32_1_a7,
     author = {Ho, Pak},
     title = {The projective plane crossing number of the circulant graph {C(3k;{1,k})}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {91--108},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a7/}
}
TY  - JOUR
AU  - Ho, Pak
TI  - The projective plane crossing number of the circulant graph C(3k;{1,k})
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 91
EP  - 108
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a7/
LA  - en
ID  - DMGT_2012_32_1_a7
ER  - 
%0 Journal Article
%A Ho, Pak
%T The projective plane crossing number of the circulant graph C(3k;{1,k})
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 91-108
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a7/
%G en
%F DMGT_2012_32_1_a7
Ho, Pak. The projective plane crossing number of the circulant graph C(3k;{1,k}). Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 91-108. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a7/