Embeddings of hamiltonian paths in faulty k-ary 2-cubes
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 47-61
Voir la notice de l'article provenant de la source Library of Science
It is well known that the k-ary n-cube has been one of the most efficient interconnection networks for distributed-memory parallel systems. A k-ary n-cube is bipartite if and only if k is even. Let (X,Y) be a bipartition of a k-ary 2-cube (even integer k ≥ 4). In this paper, we prove that for any two healthy vertices u ∈ X, v ∈ Y, there exists a hamiltonian path from u to v in the faulty k-ary 2-cube with one faulty vertex in each part.
Keywords:
complex networks, path embeddings, fault-tolerance, k-ary n-cubes
@article{DMGT_2012_32_1_a4,
author = {Wang, Shiying and Zhang, Shurong},
title = {Embeddings of hamiltonian paths in faulty k-ary 2-cubes},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {47--61},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a4/}
}
TY - JOUR AU - Wang, Shiying AU - Zhang, Shurong TI - Embeddings of hamiltonian paths in faulty k-ary 2-cubes JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 47 EP - 61 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a4/ LA - en ID - DMGT_2012_32_1_a4 ER -
Wang, Shiying; Zhang, Shurong. Embeddings of hamiltonian paths in faulty k-ary 2-cubes. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a4/