Embeddings of hamiltonian paths in faulty k-ary 2-cubes
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 47-61

Voir la notice de l'article provenant de la source Library of Science

It is well known that the k-ary n-cube has been one of the most efficient interconnection networks for distributed-memory parallel systems. A k-ary n-cube is bipartite if and only if k is even. Let (X,Y) be a bipartition of a k-ary 2-cube (even integer k ≥ 4). In this paper, we prove that for any two healthy vertices u ∈ X, v ∈ Y, there exists a hamiltonian path from u to v in the faulty k-ary 2-cube with one faulty vertex in each part.
Keywords: complex networks, path embeddings, fault-tolerance, k-ary n-cubes
@article{DMGT_2012_32_1_a4,
     author = {Wang, Shiying and Zhang, Shurong},
     title = {Embeddings of hamiltonian paths in faulty k-ary 2-cubes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {47--61},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a4/}
}
TY  - JOUR
AU  - Wang, Shiying
AU  - Zhang, Shurong
TI  - Embeddings of hamiltonian paths in faulty k-ary 2-cubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 47
EP  - 61
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a4/
LA  - en
ID  - DMGT_2012_32_1_a4
ER  - 
%0 Journal Article
%A Wang, Shiying
%A Zhang, Shurong
%T Embeddings of hamiltonian paths in faulty k-ary 2-cubes
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 47-61
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a4/
%G en
%F DMGT_2012_32_1_a4
Wang, Shiying; Zhang, Shurong. Embeddings of hamiltonian paths in faulty k-ary 2-cubes. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a4/