On total vertex irregularity strength of graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 39-45.

Voir la notice de l'article provenant de la source Library of Science

Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.
Keywords: graph labeling, irregularity strength, total assignment, vertex irregular total labeling
@article{DMGT_2012_32_1_a3,
     author = {Muthu Guru Packiam, K. and Kathiresan, Kumarappan},
     title = {On total vertex irregularity strength of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {39--45},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a3/}
}
TY  - JOUR
AU  - Muthu Guru Packiam, K.
AU  - Kathiresan, Kumarappan
TI  - On total vertex irregularity strength of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 39
EP  - 45
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a3/
LA  - en
ID  - DMGT_2012_32_1_a3
ER  - 
%0 Journal Article
%A Muthu Guru Packiam, K.
%A Kathiresan, Kumarappan
%T On total vertex irregularity strength of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 39-45
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a3/
%G en
%F DMGT_2012_32_1_a3
Muthu Guru Packiam, K.; Kathiresan, Kumarappan. On total vertex irregularity strength of graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 39-45. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a3/

[1] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38, doi: 10.1016/S0012-365X(98)00112-5.

[2] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388,10.1016/j.disc.2005.11.075.

[3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.

[4] J.H. Dinitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the m× n grid, J. Graph Theory 16 (1992) 355-374, doi: 10.1002/jgt.3190160409.

[5] A. Gyárfás, The irregularity strength of $K_{m,m}$ is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9.

[6] S. Jendrol' and M. Tkáč, The irregularity strength of tKₚ, Discrete Math. 145 (1995) 301-305, doi: 10.1016/0012-365X(94)E0043-H.

[7] KM. Kathiresan and K. Muthugurupackiam, Change in irregularity strength by an edge, J. Combin. Math. Combin. Comp. 64 (2008) 49-64.

[8] KM. Kathiresan and K. Muthugurupackiam, A study on stable, positive and negative edges with respect to irregularity strength of a graph, Ars Combin. (to appear).

[9] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041.

[10] K. Wijaya, Slamin, Surahmat and S. Jendrol', Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comp. 55 (2005) 129-136.

[11] K. Wijaya and Slamin, Total vertex irregular labelings of wheels, fans, suns and friendship graph, J. Combin. Math. Combin. Comp. 65 (2008) 103-112.