Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_1_a3, author = {Muthu Guru Packiam, K. and Kathiresan, Kumarappan}, title = {On total vertex irregularity strength of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {39--45}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a3/} }
TY - JOUR AU - Muthu Guru Packiam, K. AU - Kathiresan, Kumarappan TI - On total vertex irregularity strength of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 39 EP - 45 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a3/ LA - en ID - DMGT_2012_32_1_a3 ER -
Muthu Guru Packiam, K.; Kathiresan, Kumarappan. On total vertex irregularity strength of graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 39-45. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a3/
[1] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38, doi: 10.1016/S0012-365X(98)00112-5.
[2] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388,10.1016/j.disc.2005.11.075.
[3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
[4] J.H. Dinitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the m× n grid, J. Graph Theory 16 (1992) 355-374, doi: 10.1002/jgt.3190160409.
[5] A. Gyárfás, The irregularity strength of $K_{m,m}$ is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9.
[6] S. Jendrol' and M. Tkáč, The irregularity strength of tKₚ, Discrete Math. 145 (1995) 301-305, doi: 10.1016/0012-365X(94)E0043-H.
[7] KM. Kathiresan and K. Muthugurupackiam, Change in irregularity strength by an edge, J. Combin. Math. Combin. Comp. 64 (2008) 49-64.
[8] KM. Kathiresan and K. Muthugurupackiam, A study on stable, positive and negative edges with respect to irregularity strength of a graph, Ars Combin. (to appear).
[9] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041.
[10] K. Wijaya, Slamin, Surahmat and S. Jendrol', Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comp. 55 (2005) 129-136.
[11] K. Wijaya and Slamin, Total vertex irregular labelings of wheels, fans, suns and friendship graph, J. Combin. Math. Combin. Comp. 65 (2008) 103-112.