@article{DMGT_2012_32_1_a15,
author = {Gordinowicz, Przemys{\l}aw and Pra{\l}at, Pawe{\l}},
title = {The first player wins the one-colour triangle avoidance game on 16 vertices},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {181--185},
year = {2012},
volume = {32},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a15/}
}
TY - JOUR AU - Gordinowicz, Przemysław AU - Prałat, Paweł TI - The first player wins the one-colour triangle avoidance game on 16 vertices JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 181 EP - 185 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a15/ LA - en ID - DMGT_2012_32_1_a15 ER -
Gordinowicz, Przemysław; Prałat, Paweł. The first player wins the one-colour triangle avoidance game on 16 vertices. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 181-185. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a15/
[1] S.C. Cater, F. Harary and R.W. Robinson, One-color triangle avoidance games, Congr. Numer. 153 (2001) 211-221.
[2] F. Harary, Achievement and avoidance games for graphs, Ann. Discrete Math. 13 (1982) 111-119.
[3] B.D. McKay, nauty Users Guide (Version 2.4), http://cs.anu.edu.au/~bdm/nauty/.
[4] B.D. McKay, personal communication.
[5] P. Prałat, A note on the one-colour avoidance game on graphs, J. Combin. Math. and Combin. Comp. 75 (2010) 85-94.
[6] Á. Seress, On Hajnal's triangle-free game, Graphs and Combin. 8 (1992) 75-79, doi: 10.1007/BF01271710.
[7] D. Singmaster, Almost all partizan games are first person and almost all impartial games are maximal, J. Combin. Inform. System Sci. 7 (1982) 270-274.
[8] A UNIX script and programs written in C/C++ used to solve the problem, http://www.math.wvu.edu/~pralat/index.php?page=publications.