The first player wins the one-colour triangle avoidance game on 16 vertices
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 181-185.

Voir la notice de l'article provenant de la source Library of Science

We consider the one-colour triangle avoidance game. Using a high performance computing network, we showed that the first player can win the game on 16 vertices.
Keywords: triangle avoidance game, combinatorial games
@article{DMGT_2012_32_1_a15,
     author = {Gordinowicz, Przemys{\l}aw and Pra{\l}at, Pawe{\l}},
     title = {The first player wins the one-colour triangle avoidance game on 16 vertices},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {181--185},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a15/}
}
TY  - JOUR
AU  - Gordinowicz, Przemysław
AU  - Prałat, Paweł
TI  - The first player wins the one-colour triangle avoidance game on 16 vertices
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 181
EP  - 185
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a15/
LA  - en
ID  - DMGT_2012_32_1_a15
ER  - 
%0 Journal Article
%A Gordinowicz, Przemysław
%A Prałat, Paweł
%T The first player wins the one-colour triangle avoidance game on 16 vertices
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 181-185
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a15/
%G en
%F DMGT_2012_32_1_a15
Gordinowicz, Przemysław; Prałat, Paweł. The first player wins the one-colour triangle avoidance game on 16 vertices. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 181-185. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a15/

[1] S.C. Cater, F. Harary and R.W. Robinson, One-color triangle avoidance games, Congr. Numer. 153 (2001) 211-221.

[2] F. Harary, Achievement and avoidance games for graphs, Ann. Discrete Math. 13 (1982) 111-119.

[3] B.D. McKay, nauty Users Guide (Version 2.4), http://cs.anu.edu.au/~bdm/nauty/.

[4] B.D. McKay, personal communication.

[5] P. Prałat, A note on the one-colour avoidance game on graphs, J. Combin. Math. and Combin. Comp. 75 (2010) 85-94.

[6] Á. Seress, On Hajnal's triangle-free game, Graphs and Combin. 8 (1992) 75-79, doi: 10.1007/BF01271710.

[7] D. Singmaster, Almost all partizan games are first person and almost all impartial games are maximal, J. Combin. Inform. System Sci. 7 (1982) 270-274.

[8] A UNIX script and programs written in C/C++ used to solve the problem, http://www.math.wvu.edu/~pralat/index.php?page=publications.