Parity vertex colorings of binomial trees
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 177-180
Voir la notice de l'article provenant de la source Library of Science
We show for every k ≥ 1 that the binomial tree of order 3k has a vertex-coloring with 2k+1 colors such that every path contains some color odd number of times. This disproves a conjecture from [1] asserting that for every tree T the minimal number of colors in a such coloring of T is at least the vertex ranking number of T minus one.
Keywords:
binomial tree, parity coloring, vertex ranking
@article{DMGT_2012_32_1_a14,
author = {Gregor, Petr and \v{S}krekovski, Riste},
title = {Parity vertex colorings of binomial trees},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {177--180},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a14/}
}
Gregor, Petr; Škrekovski, Riste. Parity vertex colorings of binomial trees. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 177-180. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a14/