Characterizing Cartesian fixers and multipliers
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 161-175
Voir la notice de l'article provenant de la source Library of Science
Let G ☐ H denote the Cartesian product of the graphs G and H. In 2004, Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24(3) (2004), 389-402] characterized prism fixers, i.e., graphs G for which γ(G ☐ K₂) = γ(G), and noted that γ(G ☐ Kₙ) ≥ min|V(G)|, γ(G)+n-2. We call a graph G a consistent fixer if γ(G ☐ Kₙ) = γ(G)+n-2 for each n such that 2 ≤ n |V(G)|- γ(G)+2, and characterize this class of graphs.
Keywords:
Cartesian product, prism fixer, Cartesian fixer, prism doubler, Cartesian multiplier, domination number
@article{DMGT_2012_32_1_a13,
author = {Benecke, Stephen and Mynhardt, Christina},
title = {Characterizing {Cartesian} fixers and multipliers},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {161--175},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a13/}
}
TY - JOUR AU - Benecke, Stephen AU - Mynhardt, Christina TI - Characterizing Cartesian fixers and multipliers JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 161 EP - 175 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a13/ LA - en ID - DMGT_2012_32_1_a13 ER -
Benecke, Stephen; Mynhardt, Christina. Characterizing Cartesian fixers and multipliers. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 161-175. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a13/