Characterizing Cartesian fixers and multipliers
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 161-175.

Voir la notice de l'article provenant de la source Library of Science

Let G ☐ H denote the Cartesian product of the graphs G and H. In 2004, Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24(3) (2004), 389-402] characterized prism fixers, i.e., graphs G for which γ(G ☐ K₂) = γ(G), and noted that γ(G ☐ Kₙ) ≥ min|V(G)|, γ(G)+n-2. We call a graph G a consistent fixer if γ(G ☐ Kₙ) = γ(G)+n-2 for each n such that 2 ≤ n |V(G)|- γ(G)+2, and characterize this class of graphs.
Keywords: Cartesian product, prism fixer, Cartesian fixer, prism doubler, Cartesian multiplier, domination number
@article{DMGT_2012_32_1_a13,
     author = {Benecke, Stephen and Mynhardt, Christina},
     title = {Characterizing {Cartesian} fixers and multipliers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {161--175},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a13/}
}
TY  - JOUR
AU  - Benecke, Stephen
AU  - Mynhardt, Christina
TI  - Characterizing Cartesian fixers and multipliers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 161
EP  - 175
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a13/
LA  - en
ID  - DMGT_2012_32_1_a13
ER  - 
%0 Journal Article
%A Benecke, Stephen
%A Mynhardt, Christina
%T Characterizing Cartesian fixers and multipliers
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 161-175
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a13/
%G en
%F DMGT_2012_32_1_a13
Benecke, Stephen; Mynhardt, Christina. Characterizing Cartesian fixers and multipliers. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 161-175. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a13/

[1] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Dicuss. Math. Graph Theory 24 (2004) 303-318, doi: 10.7151/dmgt.1233.

[2] G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967) 433-438.

[3] B.L. Hartnell and D.F. Rall, Lower bounds for dominating Cartesian products, J. Combin. Math. Combin. Comput. 31 (1999) 219-226.

[4] B.L. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389-402, doi: 10.7151/dmgt.1238.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[6] C.M. Mynhardt and Z. Xu, Domination in prisms of graphs: Universal fixers, Utilitas Math. 78 (2009) 185-201.