2-distance 4-colorability of planar subcubic graphs with girth at least 22
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 141-151

Voir la notice de l'article provenant de la source Library of Science

The trivial lower bound for the 2-distance chromatic number χ₂(G) of any graph G with maximum degree Δ is Δ+1. It is known that χ₂ = Δ+1 if the girth g of G is at least 7 and Δ is large enough. There are graphs with arbitrarily large Δ and g ≤ 6 having χ₂(G) ≥ Δ+2. We prove the 2-distance 4-colorability of planar subcubic graphs with g ≥ 22.
Keywords: planar graph, subcubic graph, 2-distance coloring
@article{DMGT_2012_32_1_a11,
     author = {Borodin, Oleg and Ivanova, Anna},
     title = {2-distance 4-colorability of planar subcubic graphs with girth at least 22},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {141--151},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a11/}
}
TY  - JOUR
AU  - Borodin, Oleg
AU  - Ivanova, Anna
TI  - 2-distance 4-colorability of planar subcubic graphs with girth at least 22
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 141
EP  - 151
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a11/
LA  - en
ID  - DMGT_2012_32_1_a11
ER  - 
%0 Journal Article
%A Borodin, Oleg
%A Ivanova, Anna
%T 2-distance 4-colorability of planar subcubic graphs with girth at least 22
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 141-151
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a11/
%G en
%F DMGT_2012_32_1_a11
Borodin, Oleg; Ivanova, Anna. 2-distance 4-colorability of planar subcubic graphs with girth at least 22. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 141-151. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a11/