2-distance 4-colorability of planar subcubic graphs with girth at least 22
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 141-151
Voir la notice de l'article provenant de la source Library of Science
The trivial lower bound for the 2-distance chromatic number χ₂(G) of any graph G with maximum degree Δ is Δ+1. It is known that χ₂ = Δ+1 if the girth g of G is at least 7 and Δ is large enough. There are graphs with arbitrarily large Δ and g ≤ 6 having χ₂(G) ≥ Δ+2. We prove the 2-distance 4-colorability of planar subcubic graphs with g ≥ 22.
Keywords:
planar graph, subcubic graph, 2-distance coloring
@article{DMGT_2012_32_1_a11,
author = {Borodin, Oleg and Ivanova, Anna},
title = {2-distance 4-colorability of planar subcubic graphs with girth at least 22},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {141--151},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a11/}
}
TY - JOUR AU - Borodin, Oleg AU - Ivanova, Anna TI - 2-distance 4-colorability of planar subcubic graphs with girth at least 22 JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 141 EP - 151 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a11/ LA - en ID - DMGT_2012_32_1_a11 ER -
Borodin, Oleg; Ivanova, Anna. 2-distance 4-colorability of planar subcubic graphs with girth at least 22. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 141-151. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a11/