Independent transversal domination in graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 5-17.

Voir la notice de l'article provenant de la source Library of Science

A set S ⊆ V of vertices in a graph G = (V, E) is called a dominating set if every vertex in V-S is adjacent to a vertex in S. A dominating set which intersects every maximum independent set in G is called an independent transversal dominating set. The minimum cardinality of an independent transversal dominating set is called the independent transversal domination number of G and is denoted by γ_it(G). In this paper we begin an investigation of this parameter.
Keywords: dominating set, independent set, independent transversal dominating set
@article{DMGT_2012_32_1_a0,
     author = {Hamid, Ismail},
     title = {Independent transversal domination in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a0/}
}
TY  - JOUR
AU  - Hamid, Ismail
TI  - Independent transversal domination in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 5
EP  - 17
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a0/
LA  - en
ID  - DMGT_2012_32_1_a0
ER  - 
%0 Journal Article
%A Hamid, Ismail
%T Independent transversal domination in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 5-17
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a0/
%G en
%F DMGT_2012_32_1_a0
Hamid, Ismail. Independent transversal domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a0/

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs (Fourth edition, CRC Press, Boca Raton, 2005).

[2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[5] Topics on Domination, Guest Editors: S.T. Hedetniemi and R.C. Laskar, Discrete Math. 86 (1990).

[6] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607-613.