Independent transversal domination in graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 5-17
Cet article a éte moissonné depuis la source Library of Science
A set S ⊆ V of vertices in a graph G = (V, E) is called a dominating set if every vertex in V-S is adjacent to a vertex in S. A dominating set which intersects every maximum independent set in G is called an independent transversal dominating set. The minimum cardinality of an independent transversal dominating set is called the independent transversal domination number of G and is denoted by γ_it(G). In this paper we begin an investigation of this parameter.
Keywords:
dominating set, independent set, independent transversal dominating set
@article{DMGT_2012_32_1_a0,
author = {Hamid, Ismail},
title = {Independent transversal domination in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {5--17},
year = {2012},
volume = {32},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a0/}
}
Hamid, Ismail. Independent transversal domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a0/
[1] G. Chartrand and L. Lesniak, Graphs and Digraphs (Fourth edition, CRC Press, Boca Raton, 2005).
[2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
[5] Topics on Domination, Guest Editors: S.T. Hedetniemi and R.C. Laskar, Discrete Math. 86 (1990).
[6] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607-613.