Upper bounds on the b-chromatic number and results for restricted graph classes
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 709-735.

Voir la notice de l'article provenant de la source Library of Science

A b-coloring of a graph G by k colors is a proper vertex coloring such that every color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k-1 color classes. The b-chromatic number χ_b(G) is the maximum integer k for which G has a b-coloring by k colors. Moreover, the graph G is called b-continuous if G admits a b-coloring by k colors for all k satisfying χ(G) ≤ k ≤ χ_b(G). In this paper, we establish four general upper bounds on χ_b(G). We present results on the b-chromatic number and the b-continuity problem for special graphs, in particular for disconnected graphs and graphs with independence number 2. Moreover we determine χ_b(G) for graphs G with minimum degree δ(G) ≥ |V(G)|-3, graphs G with clique number ω(G) ≥ |V(G)|-3, and graphs G with independence number α(G) ≥ |V(G)|-2. We also prove that these graphs are b-continuous.
Keywords: coloring, b-coloring, b-chromatic number, b-continuity
@article{DMGT_2011_31_4_a6,
     author = {Alkhateeb, Mais and Kohl, Anja},
     title = {Upper bounds on the b-chromatic number and results for restricted graph classes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {709--735},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a6/}
}
TY  - JOUR
AU  - Alkhateeb, Mais
AU  - Kohl, Anja
TI  - Upper bounds on the b-chromatic number and results for restricted graph classes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 709
EP  - 735
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a6/
LA  - en
ID  - DMGT_2011_31_4_a6
ER  - 
%0 Journal Article
%A Alkhateeb, Mais
%A Kohl, Anja
%T Upper bounds on the b-chromatic number and results for restricted graph classes
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 709-735
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a6/
%G en
%F DMGT_2011_31_4_a6
Alkhateeb, Mais; Kohl, Anja. Upper bounds on the b-chromatic number and results for restricted graph classes. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 709-735. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a6/

[1] D. Barth, J. Cohen and T. Faik, On the b-continuity property of graphs, Discrete Appl. Math. 155 (2007) 1761-1768, doi: 10.1016/j.dam.2007.04.011.

[2] T. Faik and J.-F. Sacle, Some b-continuous classes of graphs, Technical Report N1350, LRI (Universite de Paris Sud, 2003).

[3] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004).

[4] C.T. Hoang and M. Kouider, On the b-dominating coloring of graphs, Discrete Appl. Math. 152 (2005) 176-186, doi: 10.1016/j.dam.2005.04.001.

[5] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141, doi: 10.1016/S0166-218X(98)00146-2.

[6] J. Kará, J. Kratochvil and M. Voigt, b-continuity, Preprint No. M 14/04, Technical University Ilmenau, Faculty for Mathematics and Natural Sciences (2004).

[7] A. Kohl and I. Schiermeyer, Some Results on Reed's Conjecture about ω, Δ, and χ with respect to α, Discrete Math. 310 (2010) 1429-1438, doi: 10.1016/j.disc.2009.05.025.

[8] M. Kouider and M. Maheo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277, doi: 10.1016/S0012-365X(01)00469-1.

[9] M. Kouider and M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306 (2006) 617-623, doi: 10.1016/j.disc.2006.01.012.

[10] L. Rabern, A note on Reed's conjecture, SIAM J. Discrete Math. 22 (2008) 820-827, doi: 10.1137/060659193.

[11] S. Radziszowski, Small Ramsey Numbers, Electronic Journal of Combinatorics, Dynamic Survey DS1 (2006).