Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_4_a6, author = {Alkhateeb, Mais and Kohl, Anja}, title = {Upper bounds on the b-chromatic number and results for restricted graph classes}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {709--735}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a6/} }
TY - JOUR AU - Alkhateeb, Mais AU - Kohl, Anja TI - Upper bounds on the b-chromatic number and results for restricted graph classes JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 709 EP - 735 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a6/ LA - en ID - DMGT_2011_31_4_a6 ER -
Alkhateeb, Mais; Kohl, Anja. Upper bounds on the b-chromatic number and results for restricted graph classes. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 709-735. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a6/
[1] D. Barth, J. Cohen and T. Faik, On the b-continuity property of graphs, Discrete Appl. Math. 155 (2007) 1761-1768, doi: 10.1016/j.dam.2007.04.011.
[2] T. Faik and J.-F. Sacle, Some b-continuous classes of graphs, Technical Report N1350, LRI (Universite de Paris Sud, 2003).
[3] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004).
[4] C.T. Hoang and M. Kouider, On the b-dominating coloring of graphs, Discrete Appl. Math. 152 (2005) 176-186, doi: 10.1016/j.dam.2005.04.001.
[5] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141, doi: 10.1016/S0166-218X(98)00146-2.
[6] J. Kará, J. Kratochvil and M. Voigt, b-continuity, Preprint No. M 14/04, Technical University Ilmenau, Faculty for Mathematics and Natural Sciences (2004).
[7] A. Kohl and I. Schiermeyer, Some Results on Reed's Conjecture about ω, Δ, and χ with respect to α, Discrete Math. 310 (2010) 1429-1438, doi: 10.1016/j.disc.2009.05.025.
[8] M. Kouider and M. Maheo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277, doi: 10.1016/S0012-365X(01)00469-1.
[9] M. Kouider and M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306 (2006) 617-623, doi: 10.1016/j.disc.2006.01.012.
[10] L. Rabern, A note on Reed's conjecture, SIAM J. Discrete Math. 22 (2008) 820-827, doi: 10.1137/060659193.
[11] S. Radziszowski, Small Ramsey Numbers, Electronic Journal of Combinatorics, Dynamic Survey DS1 (2006).