Characterization of trees with equal 2-domination number and domination number plus two
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 687-697

Voir la notice de l'article provenant de la source Library of Science

Let G = (V(G),E(G)) be a simple graph, and let k be a positive integer. A subset D of V(G) is a k-dominating set if every vertex of V(G) - D is dominated at least k times by D. The k-domination number γₖ(G) is the minimum cardinality of a k-dominating set of G. In [5] Volkmann showed that for every nontrivial tree T, γ₂(T) ≥ γ₁(T)+1 and characterized extremal trees attaining this bound. In this paper we characterize all trees T with γ₂(T) = γ₁(T)+2.
Keywords: 2-domination number, domination number, trees
@article{DMGT_2011_31_4_a4,
     author = {Chellali, Mustapha and Volkmann, Lutz},
     title = {Characterization of trees with equal 2-domination number and domination number plus two},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {687--697},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a4/}
}
TY  - JOUR
AU  - Chellali, Mustapha
AU  - Volkmann, Lutz
TI  - Characterization of trees with equal 2-domination number and domination number plus two
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 687
EP  - 697
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a4/
LA  - en
ID  - DMGT_2011_31_4_a4
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%A Volkmann, Lutz
%T Characterization of trees with equal 2-domination number and domination number plus two
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 687-697
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a4/
%G en
%F DMGT_2011_31_4_a4
Chellali, Mustapha; Volkmann, Lutz. Characterization of trees with equal 2-domination number and domination number plus two. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 687-697. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a4/