Characterization of trees with equal 2-domination number and domination number plus two
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 687-697.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V(G),E(G)) be a simple graph, and let k be a positive integer. A subset D of V(G) is a k-dominating set if every vertex of V(G) - D is dominated at least k times by D. The k-domination number γₖ(G) is the minimum cardinality of a k-dominating set of G. In [5] Volkmann showed that for every nontrivial tree T, γ₂(T) ≥ γ₁(T)+1 and characterized extremal trees attaining this bound. In this paper we characterize all trees T with γ₂(T) = γ₁(T)+2.
Keywords: 2-domination number, domination number, trees
@article{DMGT_2011_31_4_a4,
     author = {Chellali, Mustapha and Volkmann, Lutz},
     title = {Characterization of trees with equal 2-domination number and domination number plus two},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {687--697},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a4/}
}
TY  - JOUR
AU  - Chellali, Mustapha
AU  - Volkmann, Lutz
TI  - Characterization of trees with equal 2-domination number and domination number plus two
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 687
EP  - 697
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a4/
LA  - en
ID  - DMGT_2011_31_4_a4
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%A Volkmann, Lutz
%T Characterization of trees with equal 2-domination number and domination number plus two
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 687-697
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a4/
%G en
%F DMGT_2011_31_4_a4
Chellali, Mustapha; Volkmann, Lutz. Characterization of trees with equal 2-domination number and domination number plus two. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 687-697. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a4/

[1] M. Chellali, T.W. Haynes and L. Volkmann, Global offensive alliance numbers in graphs with emphasis on trees, Australasian J. Combin. 45 (2009) 87-96.

[2] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Y. Alavi and A.J. Schwenk, editors, ed(s), Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.

[3] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs ( Marcel Dekker, Inc., New York, 1998).

[4] S.M. Hedetniemi, S.T. Hedetniemi, and P. Kristiansen, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177.

[5] L. Volkmann, Some remarks on lower bounds on the p-domination number in trees, J. Combin. Math. Combin. Comput. 61 (2007) 159-167.