Adjacent vertex distinguishing edge colorings of the direct product of a regular graph by a path or a cycle
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 547-557.

Voir la notice de l'article provenant de la source Library of Science

In this paper we investigate the minimum number of colors required for a proper edge coloring of a finite, undirected, regular graph G in which no two adjacent vertices are incident to edges colored with the same set of colors. In particular, we study this parameter in relation to the direct product of G by a path or a cycle.
Keywords: chromatic index, adjacent vertex distinguishing edge coloring, direct product, matching
@article{DMGT_2011_31_3_a9,
     author = {Frigerio, Laura and Lastaria, Federico and Salvi, Norma},
     title = {Adjacent vertex distinguishing edge colorings of the direct product of a regular graph by a path or a cycle},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {547--557},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a9/}
}
TY  - JOUR
AU  - Frigerio, Laura
AU  - Lastaria, Federico
AU  - Salvi, Norma
TI  - Adjacent vertex distinguishing edge colorings of the direct product of a regular graph by a path or a cycle
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 547
EP  - 557
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a9/
LA  - en
ID  - DMGT_2011_31_3_a9
ER  - 
%0 Journal Article
%A Frigerio, Laura
%A Lastaria, Federico
%A Salvi, Norma
%T Adjacent vertex distinguishing edge colorings of the direct product of a regular graph by a path or a cycle
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 547-557
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a9/
%G en
%F DMGT_2011_31_3_a9
Frigerio, Laura; Lastaria, Federico; Salvi, Norma. Adjacent vertex distinguishing edge colorings of the direct product of a regular graph by a path or a cycle. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 547-557. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a9/

[1] P.N. Balister, E. Györi, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250, doi: 10.1137/S0895480102414107.

[2] J.L. Baril, H. Kheddouci and O. Togni, Adjacent vertex distinguishing edge-colorings of meshes, Australasian J. Combin. 35 (2006) 89-102.

[3] P.K. Jha, Kronecker products of paths and cycles: decomposition, factorization and bi-pancyclicity, Discrete Math. 182 (1998) 153-167, doi: 10.1016/S0012-365X(97)00138-6.

[4] D.B. West, Introduction to Graph Theory, second ed. (Prentice Hall, Englewood Cliffs, NY, USA, 2001).

[5] Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626, doi: 10.1016/S0893-9659(02)80015-5.