Closed k-stop distance in graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 533-545.

Voir la notice de l'article provenant de la source Library of Science

The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices = x₁, x₂, ...,xₖ in a simple graph G, the closed k-stop-distance of set is defined to be
Keywords: Traveling Salesman, Steiner distance, distance, closed k-stop distance
@article{DMGT_2011_31_3_a8,
     author = {Bullington, Grady and Eroh, Linda and Gera, Ralucca and Winters, Steven},
     title = {Closed k-stop distance in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {533--545},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a8/}
}
TY  - JOUR
AU  - Bullington, Grady
AU  - Eroh, Linda
AU  - Gera, Ralucca
AU  - Winters, Steven
TI  - Closed k-stop distance in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 533
EP  - 545
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a8/
LA  - en
ID  - DMGT_2011_31_3_a8
ER  - 
%0 Journal Article
%A Bullington, Grady
%A Eroh, Linda
%A Gera, Ralucca
%A Winters, Steven
%T Closed k-stop distance in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 533-545
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a8/
%G en
%F DMGT_2011_31_3_a8
Bullington, Grady; Eroh, Linda; Gera, Ralucca; Winters, Steven. Closed k-stop distance in graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 533-545. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a8/

[1] G. Chartrand and P. Zhang, Introduction to Graph Theory (McGraw-Hill, Kalamazoo, MI, 2004).

[2] G. Chartrand, O.R. Oellermann, S. Tian and H.-B. Zou, Steiner distance in graphs, Casopis Pro Pestován'i Matematiky 114 (1989) 399-410.

[3] J. Gadzinski, P. Sanders, and V. Xiong, k-stop-return distances in graphs, unpublished manuscript.

[4] M.A. Henning, O.R. Oellermann, and H.C. Swart, On Vertices with Maximum Steiner [eccentricity in graphs] . Graph Theory, Combinatorics, Algorithms, and Applications (San Francisco, CA, (1989)). SIAM, Philadelphia, PA (1991), 393-403.

[5] M.A. Henning, O.R. Oellermann, and H.C. Swart, On the Steiner Radius and Steiner Diameter of a Graph. Ars Combin. 29C (1990) 13-19.

[6] O.R. Oellermann, On Steiner Centers and Steiner Medians of Graphs, Networks 34 (1999) 258-263, doi: 10.1002/(SICI)1097-0037(199912)34:4258::AID-NET4>3.0.CO;2-2

[7] O.R. Oellermann, Steiner Centers in Graphs, J. Graph Theory 14 (1990) 585–597.