Closed k-stop distance in graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 533-545
Voir la notice de l'article provenant de la source Library of Science
The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices = x₁, x₂, ...,xₖ in a simple graph G, the closed k-stop-distance of set is defined to be
Keywords:
Traveling Salesman, Steiner distance, distance, closed k-stop distance
@article{DMGT_2011_31_3_a8,
author = {Bullington, Grady and Eroh, Linda and Gera, Ralucca and Winters, Steven},
title = {Closed k-stop distance in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {533--545},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a8/}
}
TY - JOUR AU - Bullington, Grady AU - Eroh, Linda AU - Gera, Ralucca AU - Winters, Steven TI - Closed k-stop distance in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 533 EP - 545 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a8/ LA - en ID - DMGT_2011_31_3_a8 ER -
Bullington, Grady; Eroh, Linda; Gera, Ralucca; Winters, Steven. Closed k-stop distance in graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 533-545. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a8/